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ABSTRACT

This report presents the results of fundamental investigations on a
variety of topics related to the optimization of analog and digital data communi-
cation systems. The maximum likelihood estimation of FM modulated signals
is investigated. A study is made of the threshold phenomenon in FM reception
with an ideal discriminator and a postdetection Wiener filter for the case of a
random modulation function. Information theory is applied to establish bounds
on the performance of analog communications  systems. The performance of"
PCM systems for transmitting analog information is investigated and compared
with theoretical bounds for systems of prescribed complexity. Previous work
on the partial ordering of digital channels by the criterion of inclusion has
been extended. The analysis of the optimization of N-ary digital systems
operating over a dispersive channel, which was begun during a previous phase
of the contract, is further advanced.
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SUMMARY

*

This report presents the results obtained during the third phase
of fundamental investigations in several areas related to the transmission
of analog and digital data, While the previous two phdses were devoted
solely to digital techniques, the present phase is concerned primarily
with the optimization of analog demodulation techniques.

The various investigations are reported in six chapters in accordance
with the division of the technical effort as follows.

Chapter II reports thé results of an investigation of the maximum
hkehhood estimation of FM modulated signals., The integral eqiiations
which describe the maximum likelihood estimation process are developed.
The mean square error between the maximum likelihood estimate and the
original modulating signal, valid above threshold, are obtained and compared
with the mean square error obtained when using a receiver consisting of
an ideal descriminator followed by a Wiener postdetection filter.

Chapter III is devoted to an investigation of the threshold ~i. = menon
in the reception of FM signals by a receiver consisting of an idea:
criminator and a postdetection Wiener filter for the case whan th. mrodulating
function is arandom variable. -

In Chapter IV the applica’ wn of information theory to establish
bounds on the performance of analog communication systems is discussed.

The performance of PCM systems for transmitting analog informa-
,tion over a digital channel is investigated in Chapter V and compared against
bounds on the performance attainable with systems of a prescribed complexity.

Chapter VI extends the work developed in the Phase. 2 report. on'the
partial ordering of channels by the criterion of inclusion. This criterion
is applied to resolve a paradox observed in the comparison of certain N-ary
symmetric channels.

Chapter VII extends the analysis of the optimization of N-ary digital
systems operating over a dispersive channel which was begun in the
Phase 2 report. Relationships between the transmitted waveforms, the
channel transfer-function, the spectrum of the noise, and the receiver
response function are developed.

Based on the results of this research effort, a number of recommenda-
tions for further investigations in areas related to this work are presented.

i
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SUMMARY

This report presents the results obtained during the third phase
of fundamental investigations in several areas related to the transmission
of analog and digital data. While the previous two phdases were devoted
solely to digital techniques, the present phase is concerned primarily
with the optimization of analog demodulation techniques.

The various investigations are reported in six chapters in accordance
with the division of the technical effort as follows,

“Chapfer II reports the results of an investigation of the maximum
likelihood estimation of FM modulated signals. The integral equations
which describe the maximum likelihood estimation process are developed.
The mean square error between the maximum likelihood estimate and the
original modulating signal, valid above threshold, are obtained and compared
with the mean square error obtained when using a receiver consisting of
an ideal descriminator followed by a Wiener postdetection filter.

Chapter III is devoted to an investigation of the threshold phenomenon
in the reception of FM signals by a receiver consisting of an ideal dis-
criminator and a postdetection Wiener filter for the case when the modulating
function is arandom variable.

In'Chapter IV the application of information theory to establish
bounds on the performance of analog communication systems is discussed.

The performance of PCM systems for transmitting analog informa-
tion over a digital channel is investigated in Chapter V and compared against
bounds on the performance attainable with systems of a prescribed complexity.

Chapter VI extends the work developed in the Phase. 2 report on'the
partial ordering of channels by the criterion of inclusion. This criterion
is applied to resolve a paradox observed in the comparison of certain N-ary
symmetric channels.

Chapter VII extends the analysis of the optimization of N-ary digital
systems operating over a dispersive channel which was begun in the
Phase 2 report. Relationships between the transmitted waveforms, the
channel transfer function, the spectrum of the noise, and the receiver
response function are developed.

Based on the results of this Yesearch effort, a number of recommenda-
tions for further investigations in areas related to this work are presented.
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I
INTRODUCTION

The present report covers the third phase of investigations of
digital and analog communication systems which have been performed by
Cornell Aeronautical Laboratory during the period January 1962 through
February 1963, under Contract No. AF 30(602)-2210. The objective of ~
this program is to conduct a variety of fundamental investigations for
the purpose of assisting the U, S. Air Force in the development of advanced
communication systems. The investigations are not aimed at the synthesis

or analysis of any particular communication system but, rather, at uncover-

ing the characteristics which govern the behavior of various methods of
communication. The entire effort covered by this report was analytic in
nature. While the first and second phases of this contract were solely
concerned with digital communication systems, the third phase was pri-

" marily concerned with analog systems; however, some of our previous

work on digital systems has been extended.

. This report is organized into seven chapters, each of which treats
a particular topic in sufficient completeness so that it may be read inde-
pendently. Chapters II and III are concerned with reception of randomly
modulated FM signals. Chapter II is devoted to maximum likelihood
estimation of FM-modulated signals. The maximum likelihood estimate
is the a posteriori (i. e., after observation of the received waveform)
most likely estimate of the modulating signal. The integral equations
which the maximum likelihood estimate must obey are developed. Expres-
sions for the mean square error between the maximum likelihood estimate
and the original modulating signal valid above threshold are developed
and compared with the medn square error obtained by means of a receiver
consisting of an ideal discriminator followed by an optimum (Wiener)
linear post-discriminator filter. Chapter IIl is devoted to an investigation
of the threshold phenomenon in the reception of randomly FM-modulated
signals by means of the ideal discriminator-Wiener filter receiver,

Chapter IV is devoted to a discussion of the application of informa-
tion theory to bound the performance of analog communications systems.
It is shown that it is not generally possible to specify a maximum attain-
able output signal-to-noise ratio in terms of the available channel capacity;
however, it is possible to bound the maximum attainable ratio of signal
entropy power to mean square error between the input and output signals.

In Chapter V the performance of PCM systems for transmitting
analog data over a digital channel is investigated. Two forms of binary
PCM systems are evaluated in terms of analog signal-to-noise ratios
which are obtained as a function of the digital error probabilities. Then
the performance of these systems is compared against theoretical bounds
on the error rate performance obtainable with digital systems of a speci-
fied complexity.

1 RADC-TDR-63-147



Chapter VI extends the results on the partial ordering of channels
by the criterion of inclusion which was developed in the Phase 2 report.
This criterion is then applied to resolve a paradox observed in the compari-
son of certain N-ary symmetric channels.

Chapter VII continues the analysis of optimization of N-ary digital
systems operating over a dispersive channel which was originated in the
Phase 2 report. While optimization directly in the time domain was
attempted in the Phase 2 report, the corresponding conditions which must
hold in the frequency domain are developed here. Relationships among
the transmitted waveforms, the channel transfer function, the spectrum
of the noise, and the receiver response function, which must hold in an
optimum system are developed.

2 RADC-TDR-63-147
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11
MAXIMUM LIKELIHOOD RECEPTION OF FM SIGNALS

SUMMARY

In thié ohapter the application of the method of maximum 1ikelihood to
the estimation of intelligence transmitted via frequency modulation 1s examined.
Use of this method for purposes of demodulation was first described by Youlp'-‘l
but in the past has been applied mly to modulating systems "without memory,
that is, to systems such as AM or PM where the present value of the trans-
mitted signal is a function of the present value but not the past of the
modulating signal, It is shown that this method can also be applied to
modulating systems "with memory" such as FM to yield a pair of nonlinear
integral equations, the solution of which specifies the a posteriori most
likely estimate @ ™(Z) of the modulating signal a(z) .

If one assumes that the noise is additive whit. and gauasian*', the
solution of one of the integral equations becomes obvious. The other equa-
tion is then simplified by assuming that the carrier frequency is large
compared to the bandwidth of the intelligence. It is then further assumed
that for sufficiently large signal-to-noise ratios thé error, i.e., the
difference between the actual intelligence a(?) and the maximum likelihood
estimate a.“(z—) goes to zero in a manner which permits linearization of the
remalining integral equation.

The lineariZed integral esquation may be solved by the use of a Green's
function, The function obtained as the solution of the maximum likelihocd
problem differs from the modulating signal for two distinct reasons., First,
because the "design'" is based on the assumption that a certain noise level
will be encountered, the output is distorted, even in the absence of any

noise., (We are in the position of having taken statistically optimum measures

to combat noise and then by chance having received no noise.) Secondly, the
output contains a random component due to the random noise actually encountered,
The mean square difference between the modulating signal and the demodulated
output consists of two statistically independent terms corresponding to these

*The assumpticn of white gaussian noise is largely motivated by reasons of
mathematical expediencye. ’ ' .

3 RADC-TDR-63-147



effects. The mean square error is a function of time 7 'in the observation
interval ¥~ 7K 7 € ¢ ' as one would expect., Expressions for the mean
square error are derived for the zero delay case ( 7—>cc, Z =7 ) and the
infinite delay case( Z°-¢ +7) w00, (£ -7) » o0 and compared with
similar expressions derived for more.conventional FM receivers,

In deriving the integral equations which determine the maximum likeli-
hood estimate, one must, of course, use all available statistical data, It
vwas assumed that these data consist of the autocorrelation functions of the
modulating signal and the additive noise and that all other parameters are
known, Hawe%rer, it may happen that certain paramsters differ from the assumed
known values. In order to investigate thie effect of such unsuspected param-
eter variations, the dependence of the mean square error on variation of
received signal and noise strength and signal phase has been computed, It
is particularly noted that the effects of an initial carrier phase error are
attenuated exponentially, For purposes of comparison the mean square error
obtained by means of a simplified analytical model, valid at high signal-
to-noise ratios, of a conventional FM discriminator followed by an optimum
(Wiener) filter are computed, When operating under design conditions the
expressions obtained for this case are identical to those obtained for the
maximum likelihood reception; however, the sensitivity to deviation from
design conditions differ, |

4 RADC-TDR-63-147
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INTRODUCTION

The basic reception problem of communication is to obtain at the receiver
the "best® estimate of the transmitted intelligence. In order to keep the
discussion within the area of communications engineering, we identify intelli-
gence with the modulating waveform produced at the transmitter by the source
of intelligence. The data on which this estimate is to be based consists of
a finite length record of the received waveform and knowledge of the type of
modulation used at the transmitter, the statistics of the intelligence source,
and the characteristics of the communications channel. In the simplest case
of practical interest the channel is assumed to merely add independent noise
to the transmitted waveform. '

It is to be noted that the problem as stated above seeks the best estimate
of the modulating intelligence directly from the received modulated waveform.
Various definitions of best can be employed and will, in general, lead to
different estimates, The maximum likelihood solution provides the a posteriori
(after utilization of all available data) most likely estimate of the modulating
signal. The theory of maximum likelihood reception was first presented by
Youlgﬂ. In that paper it is indicated that the theory can be applied to ampli-
tude and phase modulated systems, and the case of amplitude modulation is
treated in some detail. In thie paper the application of this theory to fre-
quency modulated systems will be developed. As far as application of Youla's
theory is concerned, the most important difference between frequency modula-
tion and amplitude or phase modulation is that with ™M the present value of
the transmitted waveform depends on the past history as well as upon the present
value of the modulating intelligence.

5 RADC-TDR-63-147



MAXIMUM LIKELIHOOD FM DEMODULATION
1) Derivation of Governing Integral Equations

The system under consideration is shown in Figure 1, -

FM - x
aX(t,
a(r)—e MODULATOR DEMODULATOR [ aX(1,t)
e;[7,a(r)] e,(t) + ex(z,a(x)] +n(z)
n()
FIGURE 1

Our aim is to develop a demodulator which produces as its output a function
vhich is the most probable estimate of « (7) , evaluated at time ¢ , given
the information from the preceding 7 seconds where 7-7 £7<£ ¢t. We
define the function «'(z;¢) as the most probable a(7) ,’givén:the ™

input €,(7) during the interval £-7<7T< ¢ ¥, For FM we have
: T
e, [T, a.(Z"):l = £, sin [on*ﬂ/a.(u)du.-f ¢_7 3 E-TLTSEUE (1)
t-r

where ¢ represents the ynknown carrier phase at 7= ¢ - T, the start of the
observation period.

We will assume that both the intelligence a(Z) and the noise »(7)
are gaussian processes with zero mesan and continuous covariance functions
Ra(s,7) and £,(s,7) .

Then _a(?) and ~(z) may be expanded in a Karhunen-Loeve expansion,
as follc:m;2 »3 s

*The notation a',?) is used to emphasize the dependence of a*( ) on both T, t,
In particular, we shall later compute some properties of a (z,t) .

6 RADC-TDR-63-147



a(r)=Z:,—A%z:)- ETCTEE
it i V2 t-r<Tct  (3)

where the A;’, N; are independent gaussianly distributed variables:with
zero mean and unity variance, and

4
b:(0) = A; / Ry (7, E) 6 (B) L E ()
t-T .
4
| Ur) = / R (7, E) Y (E)dE (5)
\ t-T

The @;(7) and the Y;(T) form two complete orthonormal sets in the interval
t-T &7 &t . Upon the receipt of the waveform &, (7) , the ideal receiver
can do no more than to compute the a posteriot‘l probabllity density of all
possible intelligence signals ,o[a (T)Ie,(‘r)] .lﬂ This is, however, not the
output one desires from a receiver; what is desired is a single function a,“('r, t)
which is, in some sense, the best estimate of a2 (7°) , given the values of
€,(T) over the interval £ -7< 7 <t ., The method of maximum likelihood
chooses a*(7,t) such that p[a’(r;t) e,(r)] is maximised, This is certainly

a reasonable criterion, but one apould bear in mind that it is not the only
reasonable criterion of optimality. Using Bayes' rule, we have

_ p(e) p(ela) | 6)
rlale,) = o(e;) .
where pla) - probability demnsity of a(7?)

#( a.|e,) - conditional demsity of a(z7) given e,(7)
p(e/] @) - conditional density of e,(Z) given a(7)

E

p(e;) =« probability density of &;(z)

7 RADC-TDR-63-147



The integral of a probability density over the entire sample space (e.g.,

over all possible realizations of the waveform) must be unity. For a particular
received waveform e,(7) , p(e;) is a constant, such that p(ale,) as given
by Equation (6) satisfies this normalization.

We now seek to express Equation (6) in ten 3 of the coondinatos{A;}
and [N;} o ‘The a posteriori most probable signal 2*(7,t) 4is then determined
by specification of the a posteriori most probable set { A; *} .

The a priori probability densities of the first K coordinates of
{A:} and {N;} are

7/ .4

70/( (AII""AK) = (277-)/(2 EZ’P':Z!'Z" y At'z (7)
1 K 2

P (Npsees Ne) = ) exp-3 Z,‘.‘, N; (8)

The conditional probability density ,o(e,la.) is the probability demsity of
the noise evaluated at n(7)=e,(7)-e, [2', a.(r)] . Using Equation (3), the
coordinates are '

. :
N; = #"VV {"f(f) - [T,a(r)]} YT =i b, ©
Substituting Eq:.;‘:ions (7), (8) and (9) into Equation (6) yields
po(ale) = Ce ezp -1 Z’( , (A% 1 b7) (10)
vhere C, is a nomliziné constant.

The set { A;K)[} which maximizes p,((ale,) may be found by differentiat-
- ing Equation (10) with respect to each A, and requiring that all the deriva-
tives vanish, We shall assume that

K Af.. &
ae(t62) -Z‘,‘,’/—Am}:—‘_%‘,—(ﬁ t-T&T<t (1)

8 RADC-TDR-63-147



converges in the mean to the true maximum-likelihood estimate o '(7,z). We
find then

X b { <K , 2
? ,;gile,) g ‘Cx[Ar*Z;./ pibi ‘] e 'TZ-;.I(A"*’“"L".?): (12)
*
for Ar = A(k)p s

_92b;

1
A(A’)ﬂ (13)

* K
0 = Ape)p +Z[’/,u‘ i3

Substituting Equation (1) into Equation (9) and using aj(z;t) ylelds
¢ z
b =~/e:r [e,(::)-E,, sin(w,,%+/3/ a;(u,t)alu+¢)] Y (2)dx.
Using Equation (11) this becomes o

t z -1
b; =/ [e,(z)—Eos[n (woz+,‘l/ Z:: ’A;()m /l,,,/ng,,, (u)alu+¢)]w;(z)dz (1k)
T

t-r

ok -, cos(woz+/3 Z A,,,,,,A ¢,,,(a)du+¢)/,1, 8, () du i ()

oA
wr t-T t-r

--Eﬂ/ cas(woz+//‘ ar(u, t)du+¢)‘/' /'l,. Q),.(u)alu. Wi (%) dx (15)
Substituting Equation (15) into (13)

Aty = aﬁz ,u‘ /cos(wozf/?/‘ax(¢t)a’u+¢/ a/Z?//()dz

¢-T

(16)

m1tip1ying both sides of Equation (16) vy /1,. ¢,(z) and summing with respect
to 7 yields

al,t) = “ 5K 50/3‘¢,.(2’)/A‘ as(wozf/f (u,t)du+¢) ¢r(2)d¢ (X dz an
¥

ral t2/

Interchanging both summations with the x integration and the ¢ summation
with the =z integration yields

9 RADC-TDR-63-147
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ag(tt) = [o/’/'cos(woz+{;*’/ax(u,t)du+¢)(/ ¢,-(z)¢,.(r) )(i/hb %(z))d” (18)

We must now consider what happens as A'—» 0 , If a; (u,t) converges

in the mean to some function a"‘(a,t) s then it is easy to see that

/:: ay(u,t) du  converges uniformly in z to /;z a"(w,t) du for

¢t -7< zZ <€t . Therefore, the first expression in the integrand con-
verges unifomly. The second expression converges uniformly to f Ra(2,7)dz
by Mercer's theorem., For the third expression, define

1.4
G () = D pec b; Wi (%) (19)
¢"f

Then, it is clear from Equations (5) and (9) that

2 t K -
/ Rn (5, 7) mz)d”’/ {e'(z)‘ez [m:J}Z Y (%) Y (s) dz (20)
t-r ¢-T it

Now it follows from the fact that {z//,} is an orthonormal complete sequence

that the right-hand side of Equation (20) converges in the mean to e,(s)-e,[s,2"]

but this does not prove that { 9(} converges in the mean, However, it can be
that, as the eigenvalues A; become large, the eigenfunctions ¥;

contain terms of higher and higher frequency. Thus, assuming a bandwidth

limited channel, it is reasonable to assume that the higher-order b; are

so small that Equation (19) converges in the mean to a function g(z). We

are now justified in letting X go to co in Equations (18) and (20) to

get the following integral equations-

t
a"(r,e)=£o/3/ cos(cwy 2+ /3 *(u,t)azam)(/ > (2,7)dz) gtx) dz  (21)
t-T

t-T

z ¢
e, (x) - £y sin (woz+ﬂ/ a*(u,t) du+¢) =/ 9(z) R, (%,2)dz (22)
t-1

The pair of integral equations (21), (22) specify the operation of a maxi-
mum likelihood FM receiver, Note that the maximum likelihocc estimate
a*(7;t) 1s determined by all the available data ¢,(s), ¢-T€s<¢ .

10 RADC-TDR-63-147
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2) Solution of the Integral Equations for the High Signal-to-Noise Ratic Case

If the noise is white £,(s,z)=¢;d (s-z), Equation (22) has the
solution
‘ 2
e,(s) - ey[s5,2*] =€, g(s)

where 6,72 = % noise power density in watts/cps of one-sided spectrum,so that
Equation (21) becomes '

z b 4 x
"trt)= % / cos(wows/ & u,t)dur $) &(z,r)dz)[e,w-fos«»@azu%?u,t)dw)]dx (23)
t-T t-T t-T

Equat:.on (23) may be rewritten as

a*(r,t) = 2oF / cos(w‘,2'+/3/ "ty s §) 2,7 | sim(l0y 2+ / @ tudut$) + n(z)

n S-r

- £, sm(woz'f/ﬂ/ a*(u,t) du *d))] dz
where 4 (2,7) = P (z,7) dz

t-

a%tryt) - 2 / h(z,'r) 5,, sin(2w,2 + /3/ [a*(w,t)ta(u)] du +2¢)

-Eos‘m(Zu‘,fo/ﬂ/ “(u,t)+2¢)}+£asmﬂ/ [a(u)- ~a"(u,t)] du
+2n(%) cas(woz +/3/ a*(u,t) du + ¢)] dx (2L)
t-T

The contribution of the term in { } may be neglected for cv, sufficiently
large. Writing n(z) as n(z) = n,(z)cos w,z+n,(2)sin @)z, where n,(z) and ngs(z)
are independent white gaussian processes each of intensity 26: we get

a*(z,t) _ée_—/b (2,7)|E, sm/ﬁ/[a(u) -a™(u,t)]du + n (%) cos(p/ a*(u,t)du+ ¢)

t-T

(25)
- ng(z) sm(ﬁ/a (u,t)du+¢)*[nc(z)cos(2waz+/3/ a*(u,t)du+ ¢)

+ ng (%) 5in (2w, % +/3/ a"lu,t)dw + ¢)}J dz

Again the terms in { } may be neglected for sufficiently large «w, so that
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E,f x
aX(t,¢t) = 2: /h(x T)[Eo sinB| [alu)-allu,t)]dur

n Jg-r -7 (26)

x x ’

nc(x)cos(/s a."(u,t)alu+¢)-n_,(x)sin(ﬁ/a*(u,t)du+¢ de
t-7

For sufficiently large signal-to-noisa ratios we assume that a*(y,¢)—= a(u)

in such a manner that | /3f (alu)-af(w,¢)] du.,<<7 . This permits Equation
(26) to be written in the linearized form:

aX(z¢) —2"'6 h(x z'){Eo,G [a(u) - a*(c,t )l du + g cos#(x) = ng sin -F(x)} (27)
t-r

€nde-r

z
whers $(2)=/6/ alu.t)du+@.
¢

Now let us examine the term

n(x) = n, cos £(x) = ns sin £(x)

Since 1, and 2, are independent gaussian processes, ,7(;;) is also a gaussian
process, A gaussian process is completely determined by specification of its
autocorrelation function

nGan(x+©)) =<{n,(x) cos £ x) - ng(x) sin #(2)} {0, (x+7) cos# (x4 T)-n(xe T) sn b+ T)] >

= n,(x) n,(x+T)) cos#(x) cos F(x+T)
+ Ny (2) ng(X+T)) stn £(2) sin £(x+T)
- 7, (x) ng(x+7)) cos £(x) s5in FlxrT)
- {ng(x) g (x+1)) 3in £ (1) cos ¥ (X +7)

= 26, 8(0)[cos £(x) cos F(x+7)  sin #(x) sin F (x+T)]
= 2¢,2d(0)

so that ;7(1) is just white gaussian noise of intensity 25,,2 .
The integral equation to be solved can now be written

a*(r.¢) » °'6/dx a{a a’vk > (w,7)[av)- a’(vé)]*—e—/dx/duk («,z) () (28)
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Let

€rt) =

¢ z
Z?e/dz / w By (u,T) P(z) (29)
" per Jeer

buyt) = alu,t) - &lu,t)
« /3 é’u (30)

blu,t) = a'u,t) -€(a,t)

then
£,
b(Z’ t) = 22/3/ / dv Ry (u,7T) [b(V,t) b(V,t)] (31)
" eer ter Veer

In order to obtain an explicit solution we assume that

Ry (uyT) = E/ ge 2 e AleTl (32)

2 42
€,

which corresponds to the power spectrum Sa(w) = -;';—;‘—A-,— .

Note that the rriéan square value ,% (power) of the intelligence a(7) is given
by B, = R,(0,0)= 2—’4 ¢, , we shall eventually normalize both the distortion

and the noise in the output to this factor. (The reader who is not particularly
interested in the details of the analysis may at this point prefer to go
directly to Equation (L5).

Substituting Equation (32) and interchanging the order of integration

d LAY 7S
b’“(z‘, t) = ’4[ ﬁ / / dz / dv e “ [b(v,t)-b"(y,t)]
¢-T
2 2 -#(u-7) (33)
45 / / dz / dv e [b(v,t) - 6" (v,¢)]

Differentiate twice with respect to T,

» 222 o7
2b(wnt) lé‘ -I'H . [,65
AL i /-du/:x / 2 & ot e o /d{ rV[b/v,t) -8tnt)) L)

2
;5,/3 / /dz:'/dv “ b tvt)-But) - :.‘_f.'e__‘_e/d/ v[btwe)- b(v,tfl
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a:z(z,t) !, / /, / [b(y,t) -5 t)) - [ ”‘ /zx/ v[6(nt)- 81 ¢))
t-T Yu
(35)
[ 2 21 L/
LA / /lz/ [b(v,t) b(v,t)] / al% dv [b(v,t)-Elut)]
t-T

and we see that

2,22, % %
25me) ab:r.t) - &% 2——%5"4/362 £ /alz/ v [b(v,t)-b*(v,t)] (36)
t- r
3,» » 2 2 42
b (nt 2 9b'(5;t) (7]
ar,) -4 fez dv [btnt)-E'0ne)] (37)
¢ » 2,2 2
2 b (7,t) ab('r,t) E/B
a:,, - £ T e ‘« [b(r,t) b(z,t)] (38)
To get boundary conditions which specify a unique solution of Equation (38),
we get from Equations (33) and (3L)
2,22
B(e-T,t) = ’”"’3 / / dx / av e "’[b(y,t) -8, ¢)] (39)
¢-r
. 2 2 Alu-t) .
b(t,t) = /d dv e [b(v,t)'b(V,f)] _ (Lo)
* 2p? g% 2 - A(u-ta7) .
98 4 e) =4 £ 5/3 / /alz/a(y [66,2)- 5, 8)] (k1)
or t-T
* 2,2 2
2 tt,e) - ’”"’3 3 / /dz / do e oty -0, 81] (L2)
t-r Yu
So ij(t-r, t) - 4 6°(t-1,)=0; t) + £6(t,t) =0 ®3)
Also, from Equations (36) and (37),
3. » L
9 2p* - 2°b ) o 2_9_5_ ; . (nn)
Z2(t,8) - Bt t) = 0 o (0Tt - A (t-T,t) =0
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The system of Equations (38), (L3) and (LL) can be solved by means of a
Green's function G(7,%,t) , that is, we can set

¢ .
B(z,¢t) = / G, £, t) b(E,t)dE (L5)
¢-T

Let us introduce the notation: Y

(]
A= ( é’;’%—;‘%‘—) [dimension’less paralater] (L6)
Ly = af—z - #° ma—z » A4 (L7
A fT) = 9—7 (¢-T)- £ F(¢-T) (48)
A fr) = 2 (¢-T)- £%-Z (t -7) (L9)
B, ) = —”—, (2) + AH2) (50)

F) 2
B, $r) = = () - £74(t) (51)

where f(z) is an arbitrary, continous function of 7 . Then G must satisfy
the following:

Ly 6(r, £ ¢) = 47 ¢(z- ) (52)
Am G(T, E;t) = 0 = B, G(T,E; t) (53)

Equation (52) means that ([,G=0 where 7 +& , and at ‘7 = f s 336(2',1-',%‘)/32’J
has an upward jump of A£A*

To solve Equations (52) and (53) we shall use matrix notation. First,
define C to be the complex number such that

C=é':§),zf;:' # i'g/lz-gl:l (54)

”

so that ¢ 4%?%+ 2"4%=0 . The elementary solutions of the equation
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L, G = Qare-arranged in a row matrix:

cr-t) cr-t) -c(r-t) -c'r-t
ulr;t) = l:e ) € AP AP ):l (55)
and we express G(7;£;t) by means of two colum matrices g(f; t) and
g(€it) s
©(rt) pe€;e), t-ngs'Z'st (56)
G(r; €;t) =
w(rit) g(é;t) , t-T<r < E<t
Now we define the square matrix
u (&;t)
£) - | E G (57)
%lll(g;t)
where primes denote derivatives with respect to 7" ; this is the Wronskian
matrix and, hence, is nonsingular, Similarly, define
A u (4]
Az “ = 0 (58)
ﬁ = 0 é B’g
0 8 u

Now Equation (52) is solved for 7"+ § by virtue of Equation (56); for = £,
the continuity conditions can be expressed as

, g (59)
Wit) (p€;t) -g(k;t) =41, 2| |
YL
The boundary conditions can be expressed as
dgkt)=0, Bplt)-o0 o)

With a 1little fnanipulation we find the solution
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- A28 80 e, o
g = 22487 B e
o c(g-t) c*&-t) -c(&-t) -c'(&-t) j
€ -e e e
¢ ceCE ) gt ht) o CE) et (62)
W 3t) = - wE- (k- M-
Czec(é’ t) o2 (&£-t) e c?s :«j e c'(f t)
-C3ec(é‘t) 6*360'(4"” -Cje'c é' ‘cf3e-C (é'-t) |
F(C-,é)e'" (C;_)‘)e-c'r e+ 8)°T -(c* é)e"r 6
A (CJ’£2C)€’C7- (C'j-ézc)-cr _(C’_)gzc)ecr _(6#3_4261)667 ( 3)
~ 0 0 0 0
| o 0 0 o
o 0 0 0 (6)
0 0 0 (]
B = |(crh) 4  -(c-4) -(c-¥)
i CZ— 42 C!)_ 42 CZ_ 42 cﬂ-z_ £2
Now if the real part of ¢7 , that is, #T rf/lzf- % , is sufficiently large,
the entries in the first two columns of A  approach zero. Thus, using
ﬁ (2) » B (1) » and ,@(2) to denote appropriate submatrices,
01 A 0!0 01! A (65)
—'ﬂ = [_‘";"?')} 3 §=["‘:“- ’ £+é=. [-_‘%_—Ez—)"l
0.0 By Bry By Bez)

'.5(1-)’@(2;13(2;': By’
(é‘*é)-@[»» - +8) 4=

0

)

~

- - R .

-7 "
) v 0

0 -84 Ba

.

s (4+8) 8- [

I By Beay|  (66)
0

0

A more detailed analysis shows that Equation (66) is correct to within

an error of order |e "ZCT,

We now find

17

o In effect, then, we have let 7 - tend to.oo
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e TCEY) _ pnyCt) _/_Cc,e-c(e-t) Ot
, oo, L) pon, O -ctt)
Wle —— (67)
= ace*cr-c?) _Ccuae+c({-t) _'_C,*BZc(f-t) +K,C*ef6’(f-t) -Cc% c(&-t) o
4 o 2 cLCTCl) o on, R | CNE2) ]
1 1 llc+e 0 > CHe O-C*£) 1
Bu= By '= (68)
C-& c™-4]l 0 C%H% (C-C*)C+B)(C*+#)| O C+B)C-% -1
! (C+CH)(C*B)(C-£) 2CH(C* B)(C*E)
B’ Bray* (69)
(C-C*)(C+A)CHE) L-2¢C(C+R)(C-8) - (C+CRNC+R)(C )
C,,z-c(;-t)
* -cX(e-¢) (70)
bt ol a2, CC -ce ¢
LAY g =T ey = 10T wR) ongcle -t
ceC'({"t)
[0 0 -(c+reM)(CchR)(C-#) -2CXch k) (c* - #) ]
= 1 O O z2c(c+#)(c-4) (CHC*)(C+R)(C*£)
Q8) 8o aicE) . ) (1)
O O (C-CT)C+E)(C*+E) 0
|0 o o (C-C*)C+R)(C*+R)
F—(c-c")(m)(c&z) O -(C+CNCHANC-8) -RCH(CHR)CH-E£)
. / O -C-CHCR)CER) 2C(C+R)(C-%)  (CHCM(CeR)(C*-B)
(4+8) é'(c-c")(c+;e)(c"n€) g 0 o 0 (72)
0 0 0 0
Solving for G(7,£;¢) one obtains
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cc* -Cl2t-&-7)

s - L (Y LAY/ LY .

G(T,&;¢) '2(6'2-C‘Z){C-C")(Cd)(cﬂt)[*c (C+C)CHRAXC-k)e -
+C~(C+C’9(c+l)(cn_£)c’C”(&f‘f'Z’) -20C "’(C’f,.t)(ctt)e “(C+C®)E+C"E+CT
'ZCC‘(C*‘)(C'!)Z ~(C+CM)¢+CE+ chr -C"‘(C-C’)/C*l)(C’*t)e-c'r"{/

relc-ccraiCr Rl e T ¥ 'J
To recapitulate, ¢
b (rs¢) =/ G(r e t)b6(;¢)d¢ (45)
or ¢
ar(r;¢) = {(r; ) + / G(z,&;t) [a(e) -¢(3; t>] d¢ (7L)

- 00

with ¢ given by Equation (29) and G by (73).

Now #-7 may be considered as the "delay time" of the demodulator
which these equations describe, In particular, we shall consider the cases
of zero delay and infinite delay:

Zero delay: ¢=7T:! G(7,£57)= G,(1-¢)=

(79)
c?c* _e CCE £, e-c"( z-2)
(C-C*)(C+RA)(C*+4)
Infinite delay: t—=oo: G(7,&;00) =G (7 &)=
cc* x, -Clr-21 -ctiz-¢l (76)
—_— . C
pyprapesy [ C’e +Ce
It will prove useful to note from Equation (5L) that
YA (77a)
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Alternatively,

(C+E)C-8): —C** (77b)
(C*+E)(C*-%)= - C* (77¢)
also )
ce”= £42% (774)
so that
G, (z-&) = <_——~C£Ct_)c(f)*- £ [-e'“”'aw’c*(” f)] (78)
/ o a2y ClT-El i g2y ~CHT-E)
Gu (7-8) = 53 | CC™- £ )e - M- £ )e (79)
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3) Derivation of the Mean Square Error and Its Sensitivity to Off-Design
Conditions

It is of interest to evaluate the mean square difference between the
function @*(z¢) obtained as the solution of Equation (23) by the methods
discussed above, and the modulating function a(r) , We note that Equation
(23) was derived on the assumption that the difference between the received
and transmitted signal consists only of additive noise of known intensity.
It seems unrealistic to assume that the strength and the phase of the
received carrier or the intensity of the additive noise are known precisely.
We shall, therefore, determine the dependence of the mean square error on
variations of these parameters, Two observations can be made at this
point: (1) the function a™(z#) was obtained as the maximum likelihood solu-
tion on the assumption that these parameters are known exactly, (2) the
maximum likelihood solution is not, in general,; the least mean square
solutiorg OJ

We will now investigate the mean square error of a detection system
which operates in accordance with Equation (23) derived on t}}\e afsmption
that £,,¢ and ¢, are known exactly but instead receives £,,¢:=¢+A¢
and 6/:7 « The determination of the sensitivity to deviations from design
parameters is particularly important in cases such as this where the system
has been optimized in a fairly abstract manner, for example, variations of
the phase can be disastrous to a coherent PSK system,

Let
A v A B
e,(z) < £, sin(wr+f8] alu)du+d+Ad)+n(zT) (80)
¢-7

A s
where £, = pg Eg vt strength of received carrier

A

nT)=u, n(c)-++- .- - - receiver noise of intensity é\n“'/é:zfnz

The three parameters, .. , 4 , A¢ are introduced here to account for.
"off-design" operation.
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Substituting Equation (80) into (23)

£ B 14 X X
a™(r t)= e"z co.s(wo;c+,d[ af(u,{)dwf-#( Ry(27) dz)
n Jt-7T x t-T t-T %

pus Eo Sin(@x+p [ aw)dur@+4P)+u,n(e) -& sz’n(woxv-,éf X, t)du+ ¢Jdn
¢-T t-T

(81)

We will first assume that A¢% = 0 and later consider the case AP #0
separately. By repeating the arguments which led from Equation (23) to

Equation (28) one obtains
2,2 nt

HsEdf S
»* - S &0 - »”
a’(rt¢) = 2¢,? /f-rdx‘[-rdsz-rdu& (z,7) [a(u) a (u)] (82)

pinEaf [ X
+ S0 dx| dz Ra(2,7) n(x)
2e; Jpr der 7

where /(('x) has the same statistics as before: white gaussian noise with
autocorrelation function 26,,28(2') _« The solution of Equation (82) is
given by Equations (7L) and (73), with these changes: A is redefined as

1
[ mbpe] ”
T o ke 2

Z24%€, (83)

and

= tabol tctx xdzR (2,z) n(x) (8l)
S 26 Uy ey 7

From Equation (7k4) we see that the solution of Equation (82) can be symbolized:
a¥*=F+rgta-§)=gar(1-g)¢
The difference . -c¢u*can then be written as

a-at=(1-gla-(1-¢)C - (85)
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While both terms are stochastic, they are independent since the first, or
distortion term, is a function of the signal a(7) only while the second,
or noise term, is a function of the noise »(z) only. The mean square error
is, therefore, given by the sums of the mean squares of the separate parts
which we will now compute for the case of zero and infinite delay.

a) Zero Delay

(1) Distortion term, 0, .
galtt) = ftG(é,E, t)a(Z)d¢
o (86)

- [ Go(@)alt-£)az

a(t) may be obtained by passing white gaussian noise a'(i)zhaving intensity
2 N . z‘:
&, through a filter with transfer function [F(w) , 2Eiw? so that

alt) = -ﬁ/uz'”cz(f-z)dz (87)

Qa(t t)-al¢) =o/ d:o/atztao(f)e"’a(f-f-r) -[dzze“iz(t-r)

-/ dr | / ;Jao(a)ie'“"”-te"’] alt-7). (88)

* - - -t -
i/dféo(f) A8 /‘ £(C- zg(c )[ “CHEAT g ”]dg

-2 [ (€* #)e *Tulcm k) Ta(c-4)e T - (c- m‘c“’J

c-c*
-kt R(C"-%) -cv R(C-R) -c'T
= e et s - 8
ke "+ @ c% e 2% e (89)
ga(t,¢)-alt) /a.’z- t“(cc—f) e ’é(ccf)e'c*r]a(t-‘z) (90)
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The mean square of the distortion term,

oo " i o 2
0, ={(Qalt.t)-alt)) = 6;/ [t(i* AC"E) -cx f(ccf)e ¢ ,]

- e /d [LCH RACH M -z 2RHCRNCE)  —crcnz, £°C-A) ]

c-c* ¢ c-ch? ¢ (c- c")‘e
, #* (c* 8 2(c-A)(C* %) (c-;e)z]
“€a (oM cic* T

- i éa, *_ c*'t _ £_'£
= (c-c*)z[(c e ) Rt za*)]

_8% [ . (C+C*)(C"—t)-zc(c-ﬂ)_ (C*-#)2C"- (C+c"kc-;e)J
" (c-ch? [(C B e €)= crecac)

et [y 4y -2CHcCcm i b - aC” clrcem-20" - ACHAC
= TP [(c %) 20(C+C*) (68— cwcacr)

A (A G s IO (c-%)(C*ZC*-ﬁ)]
(c-c*) 2C(C+C¥) 2CH(C+C*)

_ A%, [ 2(c+CN(Cha) + (CHANCHR) , 2(CHC)C-R)- (c-t)(cd)]
T c-c?) 2C(C+CY) 2C*(c+C*)

. et [_c*-t_ ¢t cH), ¢ ]
c-cY)| ¢ zc(c+c*) c* zcr(c+ct)
_ t’eg’[ -CNCrR)+CCR) | _C-C* T _ g, 2[CHCA
c-c* cc* 2(C+ch) cc* Z(C+C*)

L g2, 2 2CHCN-2H(CrCY)-CC*  Ateg? [SCCH2ALCACH) 24*]
a zZcc*(c+C™) 2CCr(C+C*)

From Equation (5k)
CC=AENF, C+C*=dy2)i+1,
so that

n ___i - B3\#2-242)\°+1
o .

NAIN T

3A%+ 2-2/22%+1 I p
}\z}/z/\z,,_/' Pa-"",;)‘z"}\ a , for large A. (91)

=

24 RADC-TDR-63-147



The mean square distortion, D, » is determined by the product of the
3)\ +2 2Y22%+7
intelligence power 4 = Z lea, and the function f£(}) =
It will be noted that f ( A) decreases monotonically to zero wq.th increasing
A .

The value of the dimensionless parameter ) = &-Ef—"zéﬁ;—L
provides a quantitative measure of the channel quality., It "seems worthwhile

to explore the relationship of A to the more conventional FM parameters
of carrier-to-noise power ratio and modulation index, In the usual FM analysis
sinusoidal modulation & frequency £, is assumed, The discriminator out-
put is passed through an ideal, rectangular,low-pass filter and the noise
power is computed in that bandwidth. The modulation index, &/ , is defined
as the ratio of carrier frequency deviation, Af , to modulating frequency

fo o In order to apply these concepts to the situation at hand, we
define a noise equivalent bandwidth B, and the modulation inhdex M as follows:
Let 8y be the bandwidth of an idedl , rectangular,low-pass filter, having
the same area as the intelligence power spectmm*.

2\ %

o0 *‘2 A
8n= o7 / 2%r0? dew = cps (double~sided spectrum)

The noise power A in the bandwidth 8y is then
N=€28y =LA} ---- - - RF noise in intelligence bandwidth B,

The modulation index A/ is defined by

g2 - Mean Square frequency deviation due to modulation <(A+‘)z>
Square of noise equivalent bandwidth BN

'(zfa,,) )= :‘; ‘

*The intelligence signal a(7) can be obtained by passing white gaussian noise,
of intensity ¢,' , through a filter with transfer function |F(w)|* L/(w% £ )
the intelligence power is then A, :4( te,,,") An ideal filter of bandwidth
8y will also have output power £, ; hence, By 1s called the noise
equivalent bandwidth.
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2,3 2

£, B'e A,
Then A = é"z_’t_;é_;;’;a-ﬂ, (H)* 28 (92)

! -2
where £ = Efo *++*  Design Carrier Power

(2) Noise term, N, .

In order to obtain the steady-state noise term of the gzero delay
estimate we let 7 oo in Equation (8L).

t x
(v t) = %ﬁﬁAaAdz Ra(z,7) n(x)

2 ¢ X -
=ﬁ%%/9ﬁ/¢x/ dze 15 ) (93)
n - 00 - 00

2452 ¢ x
- ;T’,’;:'—j%/ dx | 4z e"lz'ﬂq(x)
S n

3L, ¢) =/ dEGo(¥) L (t-¢.¢)

212 ,o0 ¢ x
=i"76"‘—7‘-i/d§f dx /[ dzG,(g)e ¥ ey (k)

€ 6/445 o - - 00
= Mn €, 82" 1t [ - * —z(/z-fv-{l]
————en e -/.cdx [dg"[“dzc.,(f)e n(x)
212 A¢ 4 x X
Qrle,t) -7 (t,¢)= /‘;L;%)_f;‘_ / dx{ [ as [ dec.peti=tH | d:c"’"‘?q(z) (95)
n S - 00 [ - 00 . oe
/;;/xalzaa(z)c"""“" -/xdze“"“'
0 - 00 - 00
Y o0 Note Z&€x<¢
,/ dz[/d{&,(&)e""'“”-e*("”] (%6)
[ w0 A
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Since #(z) is stationary, it is clear that the statistics of the noise tem
are independent of ¢ , and we will therefore let ¢ =0,

©o - .0
/ dEG,(E)e  Er el o / 2dEG,(£)e ) qzc,(2)e 2 (#* ) (z<0)
) -2

f_ »*
(Cctc).(f )Zf/‘ [ -(c-t);da,,_e-(c-t);,«u]

+(c-t)(f*t) d [ '“*"""+e‘“"‘"““‘]
c-C L

“C-C*

(c-z)(c* 4)
c-c*

i; (C* t)(-_—_) Ca [_ t CQ
rvre Lo s 4 cc*’c*+z €

e, 24(C™#) ¢ 2A(C-£) oC*
(C+ENC-C") (C-Ch(C*+ %)

[—(c* B) e 4 (C-) e et (- 2) - (c- B)eC *] (o7)

[(C t) -1 CE+(C**t)—7eC~E]

[:d"[fozfeo(a)g*“m' _eu]

/‘ [‘( 2X(C*- £) ce___RR(C-R) c*z]

c+R)(C- C’) (C-C’“)(C*+i) (98)
< ZR(C™-B)_ cx  ZR(C-E) o
clcrr)c-c*) CHC*+R)(C-CY)
Substituting Equation (98) into (95) and recalling p)p(arz) = 2¢, 6(2-),
one obtains
Mo = <(Q8(t,¢) - Tt t)?>
_ Mnleah*n /;z[zx(c*—t)ec‘ ) zl(c-ﬁ)e"‘]z )
$ls C(C+R)(C-C?) CRc*+h)(C-C*) ‘
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r, .
N = ﬂn‘efﬁ"/\“ “an [H '™ BN dthe-tie” "

Fus CHeh)HC-ch)2 o RN C-c) TC i e

I A W75 () ) M Y % () (%) 2t
Yus CACHO(C-C)* CCHereNe-CTeRNcA)” C* e+ c-c*

| pota [0 O o) R)® | 2ne-n)cn)”
Has [cc' T-c9 e Nec)E T TCENC-C

_ pneanc-nc-n)"

2usCicti(c+cNC-CY°

2 2

-0 o€a [ ]
”4 * »
2usCTTECHCT) 2usC ‘c*z(c ) AT A

[C(Cv‘&‘*) - ‘/CC"'/'C*(C*C*)]

2 2,2
M€y £ 2
- ey c*)[c 22k CCCHC) 2R CC e B e zt(cw*)d]

HMp 5 *2*
" 2u M CrC

--z'lez’ “n' A“+¢Az+z-(2)\z+2)7/2)\z+/
- 2 a . .

[c‘c*‘-z;e CCHNC+C)+ 4 Ce*-287CrCY + 24 “}

s 47/2/\1’,,7 (100)
i ,._¢,,‘P Norda2r2 -2\ 2) /223" 41
ps A*y 2 Q21

For large A s this is approximately

F A
L 1 (101)
No s pd; ﬁA

The mean square noise term, 4, , isz obtained as the product of the intelligence
power A, =#c?/2 and the term .ﬁ‘—-g( A) where

()< A “yrtrz-exts2) /2251
9A)" A4/2A2+/7
again decreases monotonically to zero with increasing A
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The total mean square error A4/, is obtained by addition of the distortion
term Equation (91) and the noise term Equation (100)

)= ((a-aty,, - 5A+2 zéz,\+/+ g A+ ea’s2-(20 2) faa™1 (102"
G Y L Hs XY 22%+1 ‘

b) Infinite Delay

(1) Distortion term, Ds .

oo
Galo)= [ Guld)alt-p)ds (103)
alt) = 76/ dre *Palt-1)dr

Qa(t,o0) = 76[; d{o/dZ'G,,(E)e'“a'(t-f‘z') (10L)

Let F+Tsx T=x-¢

then x runs from -ecc ¢o o0 ; & runs from -oo ¢o X,

-4 X
Gatt,w) - 4] dzf drGuzle™ *a(tn) (105)

Qalt,e) alt) /aa [t AECa()e ""*“} o (¢-2)

. . (106)
+[ dx [;e_”dga,, @)t 4 ""‘] au(t-x)

Now for x<0 , we find from Equations (76) and (77)

x - 4 . .
2/ doa(et A o5/ [eetahe” B Ll ™

= %> c"’)[ Clc-k)e - cHc*-4) e""‘J (107)
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N

For £> O,

X - ° -
t/ 2EGu(E) et :e/ deGulz)ett T

x AL -k
+2/ d& G
[ £G.(F)e

Z_ *l_ » -£Z x rn 5 et 2
. A[C-C*-AC+4AC ]e A d{[C(C‘-t")e c-R)¢ ”—C'(c"’-tz)e(c D lﬂ

Z2(c7-c*%) " 2C?-c*3l,
(108)

BlC+C™R] -ax % AX CH\ Ax _c&l
“Tuecn) ¢ tacem) [C(c"‘)(e e ) -crcna)(e e ")

[;t(cww] ot Rctcrac-xc"] e zec(cd)e'c”+tc*(c*+t)e'c"
2(c+C%) 2(c®-c*®) 2(c*-c*) 7 2(¢c*-c*)

Ay ACOCrE) -cy , ECH(C*rB) -c*x
= - —— o ——t
£ 2ctc ¢ 2(c?-c*?) ¢

From Equations (87), (106), (107) and (108)

] x cdye 2
Lx(palt,=)-alt)’) = €, dz[-t _/ AEGu (2)e ™ “]

oo X - N 2
e[ e[t [Cteoutere H-ae | (109)

]

2 2
=€y [ WC%Z,;—);[C(C—J&)ZCX— c*(c*- t)eckz] dx

2= A* Cx w2y C]%
+6¢[ ¢(ct_c.z)z[0(c*i)e -Ccck)e }dx

iZZ

oo ) . -
= ZiCE / [c‘(c-z)‘z'““-zcc*(c-z)(c'tz)e G e £) e
(-]

+CCe8) e =200 (CHRNC 4) e""""‘+c*‘(c*+t)’e'zc~r] d

2 2 oo *, -
- ,,(—--"—c’ffc,z 7/ [zc‘(c “a*) e x-accuccran’)e T 20 ) e “"] dy

*;‘E.z 2 2
‘WF[C(C +47)

_20C*(2CC* 2AY) ks nz, 42
e FCMC A )]

A%} o e #C%c** . 7 o
T ——— = »
#(C*-c*%)* [0 rer cect * £(ceCT) c+Cc*
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A {C"*CJC* ~yccriiccts 1ot N (ol N 4cc*1]

WGk Cec* cic*
tlé 2 @'Cﬁ)z(cz"jccl_rckz) tz(c_ 6.,,)3
=¢(c‘-c*’)’[ C+C* v

L 2
€ ca

2 » 2 2
=¢(————C+C*)’[C +3CCT+C* +t}

L A%l (3ccrrz8t)

#(C+C%)°
or
2 2
1y 2._3\42 32
G = F R FATi 1) " Y a1 (210)

3 -1
~ 4 A
“4z7 for large )

By comparison with Equation (91) we note that for large A

s

Do = Do

Ll

(2) Noise term, Ny .

In order to compute the infinite delay noise term AN, s We replace the
upper 1imit in Equation (93) by ¢, where £, will tend to oo

e

x

€q8°2* o -Alz-7]
ACAR S AR %/; dx _”aLz [ nlx) (111)
Pt = [w dEGo ()0(¢-2.4,)

2,2 oo Z, X _ s
= /zeaéi A/' d{/ ,‘,:/’ Az Ga(E)e #z-¢ elq(x)
; S - 08 - 00 -0

(112)
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2,2 L4 o0 x ara ..
/

Let Z-taz’, For z’<0}

oo , ° , Y , oo ) )
/d{G“(‘)e"/Z#‘{I:/ dan(g)zfﬁ(;*é ?’:/ dg"G,,(E)Zt(gﬂ)*/d{G..(E)e ‘({fl)
et - 60 (] -2

0 1 2 g2y (CHA)ErRZ’ o ul 42 (cm)eua'}
_/,,dfz——(c'—c“)[c“ £)e cc*-4")e

= e T -cc*-z)a*u'] (11k)

n / 2 42 xrpt_p2
+o d(m[ﬂc £%)e c*c*-£7)e

e 7 2 g2, -(CtR)E-RE" 4 nl 42 -(c**l);-la’]
+._/” J{W[C(C £)e CXC* - 4")e
/ A2y n_ gy A 4= C#’
=m [C(c-é)e -CcNCt-R)e c(cﬁ()(e -e”)
4 L "14 , L
e ) (e eCF) s cten) e“erete) e ]
’ ’ v
=ZFC—T/——-C“‘) [(Zcz- ZC‘Z) ei"-Zl Cec‘!#Ztc'ec £ J

_ A ACe *,8c%
=e + cz_c#z

We avoid the need for a separate computation for the case Z'>0 by noting

F) =/ :Z;G,.(e)c"’f'»‘EI:/*dga..(-f)e"‘/""‘r’

-/ ax e X o pleay

80 that /"' 226 (2)e M ¥ (115)

e, -Ace I+ pcre <
- & + C‘—C"
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Therefore,

X co .
/ dz[ dé&u({)c-llz'h';/_e 41z H]

x-t ’ ’
f [ ecpe e, zluJ 116)
' ~Cla’| x =C*2l
iCe +4C"% P
= atz’[ ('=x-¢)
A 6’2 c*z
For x’<0,  this is
’ ’ gl 4 »,,
¥ [-RCeracte | -te Ot aelt
/ dz [ CZ_cq’ = CZ_ c;z (117)
- o0
The integrand in Equation (116) is an even function of Z’ ; and the
integral is zero for x’=0 ; therefore, the integral is an odd function of
PAS
’ - ’ e dr Y
2 T pCe c"’#-tc“c cHz
e Cc*-c*?
“chxl _ 4 -¢*1x] (118)
, - RE
=sgn(x) CZ.onZ
Therefore, letting to-t=t ,

Gt (to0) - (8) = LnZal A / % | | sonea(he M -4 )| par (119)
’ ’ oo c2-c*?

and hence,

-cm’/ e-a*/z’l )z
(c‘ c**)*

(120;

2 244
(@t (4,005, ) D= s S 2 A /

Letting 7z, - oo , we obtain
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cmo *Iz’i.‘,z

/ (c c"‘)

lg - * -
é tCC‘! f e (€ &0x_ ,,~{C+C h‘+e zc"z.)
z,u,(c _c*Y)?
‘e ‘zcc*‘[ z2_, _f ]
2/45(6 et lec c+c* 2¢*
LA
t(CoCTC-C) |

e JE,C'C* 2 Az £ A%
« —léw /“ i = /“n e
ﬁu,(cw*) 2 Hs z(z,\+1) ,q. 2(2)"+1)

:a.

[c*(c+ c*) - 4cc*+c(c+cC *)] (121)

~B &a ——  for large )\,
L

By comparison with Equation (101) we note that for large A, A = 5 (A
The results are summarized below.

By defining the dimensionless parameter ya' 22247 our results can
be put into a somewhat simpler form for tabulation and comparison., Our results
are summarized as follows:

Zero Delay
2 2
IN+2-242)"47 3y-1
= P, = R 122
SR e “ ey aze)
2n Ne#xe2-(2X42) Y201, pn (7101
N, = r: = — — (123)
A AY2) +1 s \7+1) 7
Hn' 2
/7;= BN, = 37’(4-27)'2/4- #’Jf-/) . (12L)
7+1)"7
2
. Mp ¢y
¥ = = ,
or a 7, H, (7:;)1/2,.
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Infinite Delayz 2
_3A+2 p 37 +7

= = P
202% " a4y ®
2 2 2 7 4
A 7 -7
No = L z 9z h " —5 A
s 2(22°+1) sy 4T
37247+ 20 (72.)
Hao= Dt Ny = yy_,L A
2
y7m _ 1
For #‘s =1 > H°° - 7 Pda .

It should be born in mind that ) is dependent upon s
the above results are optimm only if s, = i&,= 7.
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(126)

(127)

(128)

A
&,
r— and that
&,
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L) The Effect of an Initial Phase Error

In an FM system with a stochastic modulation input one intuitively expects
that the effects of an initial phase error will not be propagated indefinitely.
In fact, for infinite signal-to-noise ratio where the "instantaneous" phase
variations can be observed exactly, the initial phase specifies the constant
of integration which is equivalent to the occurence of a delta function at
the origin ( T=¢-7 ) of the mduhtirfg signal. For finite signal-to-noise
ratios one then expects the effects of the initial phase to decay at a rate
which is detemmined by the autocorrelation function £, (7,z) -—"-‘2—64:6"’2-“
and the channel quality factor A .

If in Equation (81) A¢ #0  then Equation (82) takes the form

i t) - f’f’f z / / R (2. r)d:{,e/ [a.(u) -a¥u, a)] u.+A¢}d,z

// R, (2 r)d?y(z)aéz: (129)
In Equation (129) let a®(z¢) = a)f(xt)+€(z¢) where 2)(7,¢) 1is the
coherent solution of Equation (129), i.e., for 4¢ =0 ; and e(g¢) is

the variation of a*(r,¢) due to A¢%0 . So that

a)(z¢) = L °/6//R(z z')a!z{/s/ [a,(u.)-a. («, t)]dw}

¢7eT

.,uﬁégﬁ/ / R(2,7)da n) e (130)

&(z,¢) = -ﬁ%é/ / R, (2,7)dz ,6 pe(u,é)du.‘A¢}dx
¢-T

-7t 7'
t
= A/ h(x, 7:)/ elut)dudy+ Bf hix, T)dx (131)
- r t‘r

vhere 2 A L2
An-2ER __EES

P
2e, 2&,,‘
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B - ﬁéﬁ—éﬁé
2e,
%
h(x%,2)= f R.(2,7)dz
¢-r

x
-4 (-
¢-r — /| € (r')att y X<T
¢-r
f 4
-~ - (-
e-; [2-e Ur-t+7) A7) ] 237
= (132)
2 -A(7- &7 -
%‘e—[ e A MEteT)] Ly

]

. 20
From the sketch of h(%.%) , for 7-¢ ;= 2

2
7.0¢," 1

T

ASYMPTOT/IC VAL UE\
0.99997¢,

h(x,7)

0.5€2 1+

37 RADC-TDR-63-147



we note that except in a region of width proportional to /4 centered on
X s z Y

hie,T)= € ry(2-7) (133)

4,¢ 30

where the unit step function r,(¢) = { 0.4<0

We shall here approximate A(%,2) by 6: 7,(x-7) ; this saves a considerable
amount of computational work. An exact analysis leading to similar results
is presented in Appendix I,

Substituting Equation (133) into Equation (131) yields

t oA, v,
€¢) = A/dxf e, ro(n-7)e(u,b)dw +8| € r(t-T)dx
¢=T%-T 4-T

t o, | 2
=Af amfear,\z-r)e(a,e)uwe,, (¢-2)
-7 Ya

7 t
che” { [«r(é-z')e(u,i)du. " fz ¢-welw, )duf +86261) (100

Equation (13k4) has solution
e(z:t)=-—§.5'(7:-t+r) (135)

where d( ) is the unit delta function, The occurence of a delta function
is due to the approximation of 4 (%,Z) by 6-: r, (x-z) . The actual
solution would also approach a delta function as #——oe , With % finite
one will encounter a transient of duration proportional to 7/4 . In this
case € (7.¢)—=+0 as !-;sz—-ﬂ->>‘f

and the mean square error is
unchanged for such 7 ., '
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5) Relationship Between Maximum Likelihood and Conventional FM Reception
Above the Threshold

A complete analysis of the behavior of an ideal discriminator (a device
the output of which is proportional to the rate of change of phase at its
input) has not yet been performed. However, very recently, S. O. Rice has
reported the results of his detalled investigation of "Noise in FM Receivera".rﬁ
The analysis presented here was completed before the results of Rice's work
became available and does not attempt to treat the behavior of FM receivers
near threshold. The present interest is to obtain the limiting performance
obtainable with a conventional FM receiver for comparison with the results
obtained from the maximum likelihood analysis. Since, in that analysis, it
was assumed that the operating conditions are sufficiently good to permit
linearization of the governing integral equation, the above threshold behavior
of an ideal discriminator is of primary concerm. A simplified analysis similar
to that reported by W. R. Bennett will be used. [8] The noise spectrum of the
discriminator output obtained by our analysis is the first term in an asymptotic
expansion of that spectrum, which is valid as the carrier-to-noise ratio becomes
very large. The noise output from a discriminator can be obtained by considera-
tion of the statistics of the rate of change of phase of the vector resultant
of signal plus noise. The output noise consists essentially of a small
gaussian noise current and a succession of impulses or clicks which occur at
random whenever the resultant encircles the origin. In the simplified analysis
presented below, the possibility of the occurrence of clicks has been eliminated
by neglecting the in-phase component of noise. Actually, the rate of occurrence
of clicks decreases exponentially with increasing carrier-to-noise ratio.f 1
The rapid onset of clicks with decreasing carrier-to-noise ratio reduces
the output signal-to-noise ratio, and this is the primary cause of the FM
threshold.

In order to obtain results for the FM receiver comparable with those
obtained for the case of maximum likelihood estimation, we will assume that
. the channel conditions are so good that operation is above the thresholid.
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The use of zero delay and infinite delay least mean square error (Wiener)
filters comnected to the discriminator output will yield results for compari-
son with zero and infinite delay maximum likelihood estimation,

The design of the Wiener filter requires specification of the power
spectra (or equivalent) of the signal and noise components at the input to
the filter*. An approximation, valid for high carriemto-noise ratios, of
the discriminator output noise spectrum due to white gaussian RF noise may
be obtained as follows.®J Setting «(7) =0 in Eqration (1), the received
signal is

€,(z) = £, sin w, v +n(7) (136)

which may be written as
e(z) = £, sinu, T+ n,(t) sin ), T+ 1 (z) cos )T
= [E,#n,(t)] sin w, 7+ n,(¥) cos w7 (137)

= A(t) sen [, 7+ Y(7)]
where AZ( T) = LEO +n( T)] z+ ncz(t’)

= - _ %
Y(x) = tan E7 (@) (138)

The discriminator output is proportional to

() _[E+n,()]Ay(x) = ne(z) - Ay () n(z)
£+ ny]* + nf) E,

(139)

*The results of'the analysis are summarized on page 50 .,
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for large carrier-to-noise ratios,

The spectral density of (// (7) due to noise is then obtained as

2 2
26, w

E7 (1ko)

2
w
W‘ w) = —3 /w -
The discriminator gain is determined as /8 by the requirement that

the output in the absence of noise be a(7) ,

Combining these results we find that the signal spectrumS,(w) and
noise spectrum ND(w) at the discriminator cutput above threshold are given by

2
Sw) = &: i sz 7z watts/cps (double-sided spectrum) (141)
. . 2¢,*w? |
%(w) =-;372'T watts/cps (double-sided spectrum) (1k42)
(-]

The total signal power is

e (1L3)

00 2
2 %
- i o %

_— em—— z -

#
2

The least mean square (Wiener) filter can now be designed on the basis
of Equation (1LL) for the infinite delay or Equation (151) for the zero
delay case. An excellent expositionk of the theory of least mean square
filtering is presented by Bode and Shannon in Reference {93 + The pertinent

results of that paper are abstracted below,

Assuming stationary statistics for both signal and additive noise, the
transfer function of the least mean square infinite delay filter is given by

S({w)
Y(w) = $(w) + M) (1)
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where S(w) is the spectral density of the signal and M(w) is the spectral
density of the noise., The total mean square error resulting from use of
this £ilter is”

4 [7T78(w) N(w)

’ Hoo = i1 . 0o S(w) +N(w)

dw (1L45)

The least mean square zero delay filter VY, (w) is obtained as follows.
Let

* 1
(W) = ————— 1
WD) = sy (6]
where Y,(w) is a realizable frequency response with all of its singularities
in the upper half of the w plane.

1

S(w)

Y, (w) = Y, () ¥(w) = (@) + V(@) Y, (w) (1L7)
£, ()= 2_:_7 /3: (w)cz‘”";z , i:;u]\./:e( ::;sponae corresponding )
#*,(¢) ={ 7%({) )’ ;ig s realizable part of —#,(¢) (149)
W)= [ AT I e o
Then
Yy (w) = Y, (w) Y;(w) , (151)

and the total mean square error /4, resulting from use of this filter is
given by

Hy = ZL,, ” {SJw)lf~ Yy () [*+ N(w)m(w)l’}aw (152)

*Ime factor 1”. does not appear in Reference [ 9 |because the spectral density
used there is on a per radian basis, whereas a per cps basis has been used
in this paper. : )
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We shall again be interested in the performance of this system under
off-design conditions, As before, we will evaluate the deterioration when
the system is designed on the assumption of RF noise power density 6,,2'

and carrier amplitude £, and actually encounters 'e\,," = /J-,: e,f' and
A
E, = ,u.sfo . The actual noise spectrum of the discriminator output

2
is then /?/D(w) = 'f:% Ny(w).
3

3 The performance of this system with actual discriminator noise output
Ny(w) can then be obtained by first assuming s =,.¢, =7 , computing
No ) Doo, Ny, O, and then setting

A /‘bn“ A £
N“‘;TN“' NO- ffz”c

(]
A

3“ = D“ ’ DO = DO

(153)

where the circumflexes denote actual rather than design conditions, and
Noe 3 Do 5 No , D, are the contributions to the mean square error
of the infinite and zero delay filters due to noise and distortion respectively.

The channel quality factor A was previously.(Equation (83)) defined

as
2,2 2 y¥
- ws £, L5 éa.J
he (Ml (151)
Let

£28% eaz ks
7\0 - [ _zé_énT] (155)

i.e.y, )\, is the value ) assumes when My = ? =/ « The nominal
o
discriminator output noise spectrum, Bquation (1L42), is then given by

2

2
Np(w) = o _ (156)

[}
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a) Infinite Delay Case

Substituting Equations (141) and (156) into Equation (1kl), the frequency
response of the filter is

€at’
V) = Sa®)___ Ae®
8 (w) + N, (w) _efiz_ % (157)
#rw”  AE2!

(A2
w¥+ ARw*+(k 2, )*

With this filter the mean square difference between the filter output and the
signal component of the input is given by*

S 00 222 ,+00 2
A S (@) Ny (w) . & 2 &
Hoo = 2”'[09 S (w)+ Mw) dw =7 oo W BZW HEL,)! dw

y (158)
=§Wi =_1-:'—‘-&,"=.1
ar y 2~ 70'%

where
% = VYZAL +1 ~ {Z A, for A, 1 (159)

so that

/
~ =P for .
The mean square error consists of two independent components, /o = Noo*Doo .
Where #.. denotes the mean square output due to noise and [O,, the mean
square distortion of the signal as has already been mentioned,

&0 2

+
#, w
The integral Z" _[ YL AW Zr (A )¢dxll and the integrals 7 2 ?

e g » I 2 and T which will be encounfered later are evaluated in
Appendix. II.

44 . RADC-TDR-63-147



s T aph IR r R TR
.

Noo = 5L [ Np () | T (w)|*dew

246
:‘ AN ‘e
./ (e +)‘ +-L“A")2

l )
X934 -7 -l 2 p/ 2-q
= _ﬁ___o_ - (]
1
Noo ~¢ 7z= A‘Pa; for AO >>’.

Deo = Z’;f:P(w) |1 —Y(w)rdw

3%rr1
= Hoo = Noow = —','%,;-3— A
3
Doo "‘47—2 A fa for A, 2> 1.

b) Zero Delay Case

(160

(161,

(162;

(163)

The transfer function K/(w) of the zero delay Wiener filter will now

be computed, in accordance with the procedure previously outlined.
1

1/
= A%
Sa,(w)+/vo(w) éwm—; éa. i",';\,/a)

Y, (@) Y (w) =

_ L4, w?rA*

€f  whr#%WP+ %2

Let
A2
. y = 2] 4A, + 71

P
£
2

ba

228 -7

Then b5+ bF =£*2*  and 2062+ 0%) 45, = A*

(164)

(165)

(166)

80 that
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whet’w s 80} = {wistbtr )] - (2b,w)
= {WPHp e bf)- 26w ] {wP+ (5% b,7) +zb,w}
= [(w=b,)" 8} {(w+£,)*+ 5} |

=(wW=-by ~ib )(w-by +ib)(W+by -ib)(w+ by tib)

Hence, we write

/ _ A —itweig) j
S (w) + Ny (w) €s (W—by=ib ) (w+by ~ib, )
. { Ahy ilw +iB)
éa' (w ‘-bz, + ib{ )(w +b; + ib,)
- {Y' (“”}' [Y'*(“’)} (167)
_ A} -i(w-ik) (168)
Yy = o (W=2,-i6,)(w+ by -2b,)
and
_ Sp(w) 1
Tal) = 5(@) + N, (@) Y ()
_ 3.2 {
= €4 A (w-ik)(w=-by +ib,)(w+by +ib,)
o 32/ A Az Az ) (169)
‘€t (w-iﬁ +w—bz * ib, * W+ by +tb,
vhere %
= -7 - 14 o —1
A1 = (bg-ib, - 1%)(b5 + ib, TTE) T AR %At
A, = / 1 Jo-1 bg tiby+ik
2 T 2b,(b, -ib -ik) T RAL J+1 26,
A_g / 1 }3"/ bz, "t'é( ‘tt .

" 25, (5, 4ib, +i%) AL K1 28,
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The impulse response corresponding to ¥, (w) is

lwt

o0
1
1,(¢) =2—;‘[“Yz(w)z dew

_.et")\/( Az Ag );’wt
= w- zi. w - b,nb, +w+b,,+;’b, e dw

00 \ 4 ,
Since / o) e gy w1 and /‘_ic:ct g
A (: w-i# . o -

for a=64,-ib, or a=-p,-Cb ,

the impulse response #,(¥) is:

For t2 0,

B,(¢) = ie, 8AA, (ie '“)

_7/ -4t

= €, Ae
%t

For ¢<O,
iz(f) = ‘,é.a'i-’ [Az( ’l(b‘ lb')t) +A ( l( ba lb )t)}

-7
;;+/

o\(

oot
e;)t {(bzﬂb rit)e'e

+ (bg-ib, -ik)e bs*

Actually, we do not need A, (¢) for ¢#>0 , because the realizable fre-

quency response Z’(w) is obtained from the impulse response

0 for t<o
Hg(t) =

é,,-te"“ for +¢a0

SN\ sY
<14

-

(270)

(171)

(172)

(173)
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. Lot g ik (17k)
7;,-/-/ % w-ik

So Y,

Finally, the frequency response of the required filter is

Yy (w) = Yy(w) Y, (w)
%'/ ﬁ )\o
%+7 (w-b,-18,)(w + by -tb,)
F 3
_ %1 #*A* (175)

TRt P26, iw+ A TS

The mean square error resulting from use of this filter can now be determined.

The mean square error due to the noise

7
Ny = 5 -”/Vo(w)lY,,(w)l da
_ 17 eg" %-r\* P> wiATA*
27 #%,f 7;*-/)[ (4N F-cw?)? + 45,20 aw
’—’— z 7_/ 2 poe w&
2 &% (;;+l)[.° W - £%),F dew
we(E) e
27 %+ 4
%- )1_4 - (2 g (176)
()g Y 2 &’ 75+/) A f
M ~—— A for A, 1.

rZA, "

The mean square error due to distortion of the signal

z
Do (w),f Y, (w)| w

W
12 ®__1 _ 2 (177)
ﬁ_e t‘/ W, 1 ’Y',(w)| dw
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Since

and

e T T N

‘ 1-Y, (w) ‘z,= 1+ ]wa)r_ [Yjw) + Y,,*(w)]

$°A

%!
7%t

t;A 2(-% l*“Ao 2

w®
- 1+ 220 -1 SV Ao AN

_q¢(% -1)? 4
R (742) G AR 27D

e

I Z
[ww,‘;*t;w-i’

3
D, = 2_,;_7' 242 {__..;—7{:,"'(7’ -1)*I, - t‘g’—:"l(%*j)ll}

~7/ 1
"i*é:{'*r 7'77) % ,5,,)(7’*”}

z{,__ (7 -1)*
a 1" A1)

~{—'Z=—7\”;‘Pq, for A2 1-

The total mean square error

- _ 47
Ho" No+Do = %+1)2,

4
"“'V_'Z—_‘-A:. Pa‘ for >\°>>’-

We note that

M (25
Ho 3(7041 4 for Ao)}f'
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(1680)

(181)

(182)
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No #7547 -1) _
R e e 4# for A1, (183)

D, . _#%(37,-1)
0 Then G Er "t for A (18L)

c) 0ff-Design Performance

Assuming that deviations of the carrier and nolse levels are such
that the assumption of a large carrier-to-noise power ratio remains valid,
the effects of such deviations are easily taken into accouxf\b. At the out-
put of the discriminator the noise power spectrum is now I\lp(w)-(fl_'!)z/vp(w)
while the signal spectrum s(w) remains unchanged. Therefore, at thse out-
put of the filter we have

2
A
A= () m
b, = o (i=0,00) (185)

(el

where the circumflex denotes off-design conditions.

The results obtained for the discriminator Wiener-filter receiver are
summarized below.

Zero Delay:
) = ———-—37'-1 =
0, (%_*,) 7 Pa = Do | (186)
8 o Mn (%-f 1
No 2t %+ 7, Pa (187)
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)
392221+ T (7-1)*
(% + 1%

cr 4 2%
(or Loty A= ot th)

A
H, =

E3\]

Infinite Delay.

A L 3% 1

A - /»‘nb Zoz’f
N“ /‘s‘ 476" P‘I

3
2 A 1oy ki
A = 3% +;7;j%r(n 1) g

Pn,‘aeo

M 0 !
(Fof/t_:sf) H”--ip"sf/‘o)

(188)

(189)

(190)

(191,

(192,

(193,

We note that when 4 = 1 we have =, , and these expressions
are identical with those obtained for the case of maximum likelihood estima=-

tion, Equations (122) to (128).
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DISCUSSION OF RESULTS

The most striking result obtained is the complete agreement of the six
expressions describing the mean square error A and its decomposition into
distortion, O , and noise, N , terms obtained by the two different analy=es
(maximum likelihood estimation and demodulation by means of an ideal discriminator
followed by a Wiener filter) for the case when operation is under the assumed
design conditions., Since all the results were obtained by the use of appraxi-
mations valid only when operating with a high carrier-to-noise ratio it is
desirable to obtain an estimate of ﬁle range of reasonable validity of these
results, Such an estimate can be easily obtained for the discriminator-
Wiener filter case by examining the approximation made in the derivation of
the results,

This approximation is contained in Equation (139) where we set”

2
[E,+n (T)]% + ni(z) £,
This requires that E:'» < ncz( T)) and, therefore, it is essential

that the bandwidth of the input white noise be limited. In practice, the
noise power is limited by the receiver i.f. bvandwidth,The required i.f. band-
width B; ¢ is given approximately by

B %20l v 2 oo | (195)

vhere
maximum signal amplitude

noise equivalent signal bandwidth
(two-sided spectrum)

N »

*This approximation is good only "most of the time" since it obviously does
not hold when ﬁc(r) ~» O . Reference 7 considers this problem in detail,

52 RADC-TDR-63-147



C L e

Since a(t) is gaussianly distributed, a maximum signal amplitude A cannot
be rigorously specified. However, the probability |a(Z)| > A is given
by

P{IMZ‘)DA}]- 1-erf %) (196!

where F, , the modulation power, is also the expected value of Q‘(Z’)S P, =<aXZ))

If we choose A /Y&ﬁ =4 the probatility that [a(Z)|>A = #9224
is less than 10~7, The required i,f, bandwidth B”g i= then

Bp = -—32":-16— o> le- cps (one-sided spectrum) (197

2
2 2
since <7, ) = 2¢, B; 4 = Noise Power in i.f, bandwidth, and
50‘72; = Carrier Power, the r.f, carrier-to-noise power ratio
£z 5% |
zE:T— 207__0?_) (158
&

Assuming that the approximation in Equation (194) becomes valid for $20
the required r.f. signal-to-noise power ratio 2 & 10db, The above re>h-
tions can now be used to determine! the approximate minimum value of the
channel quality factor 7\° required for our results to be valid,

Using Equations (198) and (197) we have

Ea’- E&

The design chamel quality factor 7\, may be expressed in various

forms. Thus, starting with Equation (155)
L 2, 2

)\:= L€ &, La__ )
28%," *\4e?

y substituting the expressions for £, o and B p one cbtains
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A “(:e‘ P)( )f’

G E A 1] =

Note that each of the terms in Equation (200) is a dimensionless parameter,
By substituting /o> 70in Equation (200) the minimum required A, for
applicability of our results is determined as

s so(5ea)(%)

2 12
/3 ) y A ( A ) 1
= + 1
0 T \ &R T3
It is especially to be noted that the minimum value of ) o Trequired for
above threshold operation cannot be specified without considering the numerical
values of the parameters appearing in Equation (200).

(201)

Similarly, the range of applicability of the results of the analysis
of maximum likelihood estimation is restricted by the linearizing assumption

X X
that Sin/B/ [a(w)-aMuwt) ] du can be replaced byﬁ“/[a(u)-df«.t)]du.
4-r -7

It has no§ yot been determined what combination of parameters are required
to justify making this assumption.

Figure 1 illustrates the performance of both the maximum likelihood and

the Discriminator-Wiener filter receivers operating under design conditions.
y-)

Plotsofof- ,—2'- R —%—,—:@- 9 g:and/fl are presented
in accozdance with Equations (12).;), (122), (123), (127), (125) and (126).

The scale of ordinates expresses the above ratios in decibels, and the scale
of abscissas expresses ?\:‘ s the fourth power of the channel quality
factor, also in decibels, It is important to bear in mind that these demodula-

tion systems were designed so as to minimize 4, , 4/, and, hence, maximize
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/%,/ H and that no attempt has been made to control the division of # into
its component terms, O and & . From this figure it is seen that for large
A, all curves approach a slope of }, this reflects the fact that 4 ,

D , N all are of order 1/A, . It will also be noted that distortion
accounts for thé major portion of the mean square error. For large values of
Aoy 758 of H is due to distortion and this percentage increases as A,
is decreased. Figures 2, 3, L and 5 describe in various ways the effects of

operating conditions differing from the design conditions, From Equations
(122) - (128) and (186) - (193) it is seen that the variation of the mean
square error and its components, due to deviations from design conditions,

is not the same for maximum likelihood estimation and demodulation by a dis~
criminator followed by a Wiener filter. Off-design operation can be due to
encountering noise and/or carrier strength other than anticipated, A #1
and/or g #7 . Since the mean square error # 1is a function of three
variables, A, , 4, , f4; , a complete graphical presentation is not
practical. In Figure 2 a design value of A, = 10 is assumed, and the
effect of varying the received carrier strength 20 =, £, is displayed.

It will be noted that while an increase in carrier strength above the design
value does improve the performance, the improvement is not as great as if
the receiver had been designed fu: this value of carrier strength. For example,
for A = L0db we find from Figure 1 or Figure 2 that A /A, = 6.ldb,

If the carrier strength is now increased by 10db and the recelver design not
adjusted, then Figure 2 shows 2 /H° = 7,0db for the Discriminator-Wiener -
filter and £ /H, = T7.9db for maximum likelihood estimation. From Figure 1
we find that if the receivers had been designed for this comdition, 7\: =
sodb, A /H, = 8,3db, with either system of demodulation,

In Figure 3 the change in mean square error due to noise and distortion
expressed in db is plotted for the Discriminator-Wiener filter receivers.
From Equations (186), (187), (190) and (191) it is seen that this is a function
of x4, //“s only, These equations state that for a fixed Wiener filter design
the mean square distortion, O , dues to the use of this filter is independent
of variations of ., , S » but that the stochastic portion of the mean
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A
£o  ACTUAL CARRIER AMPLITUDE

As “F, = DESIAN CARRIER AMPLITUDE
”~

]
#”z €. ACTUAL NOISE INTENSITY

€.} DESIGN NOISE INTENSITY

= MEAN_SQUARE ERROR DUE TO NOISE UNDER ACTUAL CONDITIONS

A
N
N MEAN SQUARE ERROR DUE TO NOISE UNDER DESIGN CONDITIONS
2
o

— MEAN SQUARE ERROR DUE TO DISTORTION UNDER ACTUAL CONDITIONS

" MEAN SQUARE ERROR DUE TO DISTORTION UNDER DESIGN CONDITIONS

30 :------- S S - -

P S,

[ SR

A
o —
70 bog T \

[~

’
B s st SRR
»
’

.- amegrenenan -

-20 4 S S N — A T

.- Y

~394% <20 210 0 BT 20 30

Figure 3  DISCRIMINATOR-WIENER FILTER RECEIVER, O OR oo DELAY.

EFFECT OF OPERATING UNDER OFF-DESIGN CONDITIONS
(CURVES ALSO APPLY TO MAXIMUM LIKELIHOOD ESTIMATION FOR sz 27 )
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square error, N , is directly proportional to the carrier-to-noise power

ratio. From Equations (122), (123), (125) and (126) it will be noted that when
#s* 1 these plots also describe the performance of maximum likelihood estima-

tion with variation of 4, . "

The effects of variation of received carrier strength on the maximum
likelihood estimate are a function of the design point A, . The variation
of the total mean square error has already been illustrated for the case
| A, ® 10 in Figure 2. In Figures L and 5 the variation of the components

A’/:, . D/:,, Moo ) Deo with variation in carrier strength is illustrated.
From these curves it is seen that for the range of interest the dependence
on A, is not very pronounced. The fact that the plots for A,-e0 are
straight lines reflects the asymptotic dependence of /0 ’ 3 where

/O“,u:,'%‘ and D oc pa ¥ .

The major significance of our results are: It has been shown, at least
for above threshold operation, that the statistically optimum demodulation '
technique of maximum likelihood estimati;m yields the same results as obtained
by an optimized *inverse® receiver® and that lack of knowledge of the initial
carrler phase results in an increased mean square error of the maximum likeli-
hood estimate only during an initial transitory period.

The fact that the assumption of an ideal (Wiener) filter folldwing the
ideal discriminator leads to precisely the same results as the maximum likeli-
hood estimation is gratifying and serves as a ®check® on a considerable amount
of mathematical manipulation. One would, however, not expect great sensitivity
to deviations of the fil.ter characteristics fram the ideal.

*By an "inverse" receiver is meant a receiver which performs an operation
®inverse® to the modulator, e.g., in FM the modulator produces a rate of
change of carrier phase proportional to the modulating signal and the "inverse®

receiver produces an output proportional to the rate of change of the receiver
phase,
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then
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APPENDIX A -- Exact Solution for €(7.#)

Equation (131) may be written

A 2 t %
e(z ¢) .-.-f«iezﬁ--{ée:f dzf odze Al r'fc&a,e( ,2)

ze, 4 ¢-T
A £ ,6A¢ £ pla-zl
B0 Lt e

Z€, ¢-1

z. 2, y¥
A (EEE:,é )
z24* e,,

1(@t) = EE"’“’*efauf dae 2*E
)

€n

s'zz)\ ¢>f acxf dze ~tle-zi

¢ X g
e(rd) = -1763/\7 dc qtz/ adue Az ﬂé(u,i)'f X (%.4)
2 t-7 Je-r Vt-r

t ot A%
=1 ,‘;’)\:‘/ 4,;;/'“‘/‘ due -4lz-7] 6(w,$)+ X (v.4)
2 &*

T t p% Al
e(r,2)- z(r,f)--ét’)(‘ dt otz due™*E8)

t-7 V@ J4-r

e(u,t)

__z A"f /atz aﬁue A2 )

a-1)

f(A-?)

(a-3)

(A-L)

( A-5)
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Letting 0 = 2

27 °
s t %
Ole-%)= — i“}\’f aﬁef due"‘(r")e(u,é)
t-7 Va ¢-7
¢
--;—f.“?«“ au/ P atweu? -2) e(w,t)
k4

z

Dz(é-X,) —:6 Af fdx due Jt(‘t‘-"’)e(u.i')
e -

+ -’-t";\’f dzf du e(u,t)
2 z Je-r
t ¢ x
-z’,e’x"faufdz e T Ve 4)
7 , ¢t P*
1% z\['dz‘ dwetut)
= #%e -%)+ A“Af a(z a&ue(u é)
(0L A7) (e- %) = i*A"ftatz/xaAae(u ¢)
J z ¢-T '
'
(0-#D)e-X) = - £3" / e (urt)
-7
A0 e-x) = -2 e(z,¢)

0 208X )e = (0% A%

64

(A-6)

(-7)

(a-8)

(a-9)

(A-10)

(A-11)
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¢ ¢ x
Now (6 -%)y, ¢ B.--‘-;- t’At/:;d;/ d}/_dui‘“ ‘)e (w,é)

¢
(6-%).,, == —txt/’rd:/dx d "“' t+r)“ ,5)

ole-1),,, ,=-—¢ /u'a Pl Be(us)

7 - -
Dle-t)y , , = —gt‘z‘zra[ def. rdae #et27) (0 8)

Therefore,
(D+t)(e-7€)z;_t' =0, (D~t)(e-z).‘..‘_r =0

It is clear tl_ut

(0*£)e-0sp =0, D %D)Ne-1), , . =0

Now from A-3

¢ 1 3
/. ¢,38.-7 -tlz-7l
X 2 /d ¢‘£7‘ *

- -R(z-2)

1
Aa°8720 | dx(t-2)e
¢-r

Vs

vt )
+I AR 0g [dats-e)e )
[

ox = -IN4ls 'A¢/d¢(¢~ 2)e 22
XTI/ +4(z-2)
LY A¢/da(t -2e
.
D% = JXEhB) arten)e L s hgtr)

(A-12)

(A-13)

(a-11)

(A-15)

(A-15)

(A-17)

(4-18)

(A-19)

(a-20)
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O-4%)y = —7\4#‘;6-2¢(t-t)
0> 2%)x = A™8 n¢
(o' 8% = ©

?
1 _4,3,-1 “A(¢-2)
@t) =LAl he/) dacs- :
X (¢, ¢) T\ 43[;: ae ;

¢
- ol 3¥4%57 a2t »T)
X(6-T¢) =LX'4%s A¢_[_ra(e e

t
! F ¥, At -2)
ox,., =-23p A¢‘[_rda(£-2)e ;
¢t
l ¢, ¥ -1 _ -4(e-¢t+7T)
2 LY A¢[_ra£f(t z)e
So (Df‘)xr_t =0 (D't)xr.g.r -0

Therefore, we have for ¢ the differential equation
£ 2 2 ¢
(0"-2%0%% 2 2% )e = 0

and the following four boundary conditions.

[(D+i)e—]~;=¢ =0
[(D-t)e]z‘f_r =0
[0* i‘)e]m‘ =0
0> 2% é]?:’t-r Y -%?

66

(A-21)

(a-22)
(a-23)

(a-2L)

(A-25)

(A-26)

(A-27)

(a-28)
(A-29)
(A-30)
(A-31)
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The general solution of A-27 may bs written

e(z.¢) =¢5"(a., cos Cy + ay s1nBy)

A=32

-8 A A
+ ¢ %¥a, cos8y+ay sin ly)

-— OA — IA
where net-t-T,y= T-¢»T, cmsCriC, c*-c-bc, ~¢, and -

are the four roots of D%-#%%% 4% s0  so that”

A-33

The coefficients @, are functions independent of Z° and, for the
required solution, are to be determined by conditions A-28 to A-31.
From A-32 one gbtaina:
- A A - A . A
be = ¢°7{Ea,+Ea,)cosly +(Ca, - Ea,)sincy}

-e%y {(5% - é‘a,, ) coaag +(C‘«'a-'*3a,) siné\g}

D% = {ecw{(a,ﬁ/‘/)«—“-l—va,z)oo's 8y +(a,_-/¢/\"_-7'a.,)sin3y}

+%‘; 'Ey{(%'m“d“’ 33 +(a,,+}/—//7“-—7a,).sin ag}.

D% = :g_‘c 5’1{{6‘(%-*}/;}?@:)4- 3(@#-{4/)\7-1’0, )} cos ag

+{elay a1, -8(apr{#2"-1 as) Jsindy]
-ziz&'a-‘/[{a(%-{m%) -é(a,,,»*ma,, )}coa ey
+{é‘(a,+,lm a,)+é\(a,*ma¢)}szh 35]

*We are only interested in the cases where X>tre.
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Using these relations together with A-32, condition A-28 becomes
G *Ca0y tCyluy+Cya, 20

where [ 2z,
+ R
c, = Mco&éT-sméT

N Py

z
2A+1 +
- coseT+ A 2sr.né\T

221

2
03=-'{ Z2A :’ 2 coseTl-smeT}
ZA%-1
201 -2
Gy = co3 27’- s .smc':‘T
2A™-1 J

Similarly, condltion A-29 becomes

S

E-%)e -167&? + 33-“7&2-(64#*)5134-3% =0

condition A-30 becomes

b,a,f-bza.z * b.a ay "'bi‘ a’f -0
where b, = cos er+ V4A -1 sin er
-chos &r + sinlrT
coséT—-/é‘A -1 sineT
b, =-/¢)\¥—/ cos 8T+ sin T ‘_

o
[} ]

d)
h

and using
cfur’*-1 -8 =2X¢ amd aé/#’—r = 27%¢

condition A-31 becomes

-2&T

. 2,24
-¢e 'a + Ce 2

-2
"a,z+5a3 +6o,¢ = A

(A3k)

(A=35)

(a-36)

(A-37)

(A-37a)

(a-38)
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Ly re st

From A-36 and A-38, one obtains

where

where

4 -
= ;{tl‘% +(f23%+1 -1)e zar% }

a,
w | yarx=r I PTOUPR S

1 [2+y22%+1 189, zau -28T. ) _-2ET

w =2—il‘i Y

Substituting A-38 and A-bo in A-35 and A-37 results in

Aa,4+ a(cz-c,, )a, = (Cs %@Q)u‘%ﬁ
Ba, + w(b,-be ‘wrw ' (b .‘%@ ))é zA¢

2X%- /e
8= “4#{(/2747— 7)8, +z’€3:f—’7b,,j¢"”;

Solving for o, and g, from A-L2 and A-L3, one obtains

7 A - SA +/
aa,=7-l&zz_i{(bg-éce 2”)( A 27"2#& o )

-(cz ..c*e-‘ear)(ba*. @bﬁ )j
: '/ZAE-7

___M 248 2+92X"+ 1
{4 (o+ 75:2,\ k)
| _g( z+izzf+f )}
27T E *

(x-39)

| (A=4o;

(A-l1]

(A=L2)

(a-13)

(A=bb)

(A-L5)

(A-16)
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where
V=(c,-c, e *7)8-(b, -5, *°7) A (A=LT)

After a, and a, are calculated from A-L5 and A-L6, a4, and a,, can be calcu-
lated from A-39 and A-lO,

When 2= t s A=32 becomes

-cr{

E(tt)=€ d.,*-a.,)ooaé‘T-r(azf-a,)smé‘T}

—
1¢ T2az 1

28T _ AT

then e =0

and we have: A= we,
8= wp,

= 2u(1#2%4 423747 ) (By A-35 and A-37a)

>7+57Z (Since we assumed )\2’>% )

and, hence, all the coefficients @  are finite so that € (¢,.¢)—0
as 7 —»o0o,

In order to show that & (2,4)—>0 for all 7 -(¢-7)= y >>t————~—2,____;z+’

we rewrite A-32 as
5(9'27') A A
e(rt)=¢ (a, cos cy +a, sincy)

+e'cy(cc._,oo.s Qy +a,¢s;nc'>‘g)-, OSysT

le(z.4)| € e'c_y[laq) +10y |+ 10yl +1 ()= oe™®)
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APPENDIX B -- Evaluation of Certain Integrals

2
(22

-4
I ‘[ ¥ 2 dw
T Jee @KW+ K¥2S

o0
1
I-f - e
27 e w¥+K%wls KN

oo wt
Ls= L, (wi+K2) (W K2w e+ K¥AY) dw

I, f“ ’ 4
¥ - (wz*Kz)(w4+szz+K4Az) w

[~ 2
[29]
Ir = [,, (w* KPw?+ k¥ )2 w.

By writing
Wi+ K2 KNS
= {w+ (b2 + bf)-2bsw] - {wh(6246,%) + 26, w ]

={w - (bs+ib)}-{w-(bs-iby|
. {w"('ba‘f‘ ib)f - {w-(-b,- "bf)}

where

b, = gw/z,\ju

K [t
by = ?-/?A:— 7
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and then using the method of residues, one finds:

I, = 27”.{ (by+ ib,)* - (-be +ib,)% }
! (t2b,0(2bg) 2(ba+iby) (-2b;)2(-be +ib)i2b,)
_ _m
= 6‘b 5, {(b;#—éb,) -(- bz+:b,)} = % W
I, = 77 ( 1 _ 1 ) T o1
z Bbyby\by+iby by +ib, ] K3 ANEf2A 2+ 1

I, = emi[ L {terit bevit 1]

i2K(KAF) " i8bgy (b #iby) 4 KZ (-bg +ib) 4K

. A 1 by tiby -bgrib, H
”[K‘A 4b,b,{K KZ+i2bsb, _-m,b,

’

! 1 2
Ka)\o‘,l- +2b, ,(7;\_04(Ao "'7)}

w1 )\o""/
- L)

Iy - [ / 1 { (be +ib)" (-bz*ib,)"}
4 SR KX v i2bs, 52_‘-;21;,b
- 17 I / = T
- 77(/_<5/\°“ 2b, K“Ao“) K )\"(7 ;727\%7 )
f
I = 2774"[ 2(be 72by) _batily_ betib,  _bztib, |
s (i2b)é(2by )2 4 (bp t b))% i2h, 2b, 2(bptib,)
(-b,nb,) 1_-b2ﬂ'b,- ~by tib, _-b,.sib,”
(-sz) H(-by+ib,)? (i2b,)8 -2by  2(-bp+ib,) i2b,

= —2TE [ A A A O _1_,._'_-.1_}]
~64b b, | | bytib, ib, bz} {—b2+ib, bz b,

= T <_’__ by )= L
166,°6Z \ b, bf+b,? 166, (b,2 + b,%)

-
2K3W2AZ+1)%(KA,2)

/A A
K® 2af(Yzaf+1)?

72 RADC-TDR -63-147



In the computation of fs , the residues at the second-order poles were evalu-

ated by use of the relations

Res, at a, = fz{(w-a,,)'ﬁ(w)}

w:a,'
and
d { w?t 7
dw (=2, (w -2z )2 (w-%3)2)
o 2w {1_w LW W
(k) (w-2g)? (w23 )2 | w-x, W-Xs w-%;
Defining

y, ® YaaZ+71 )

the above results take the form:

L. Z 2
K 7%

Lz = :’ %(7.,2‘-/)

Ir = 777’;7,(7.-‘:)(%*;)2

7 Z 7

7 22 (nt-71)
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1l

THRESHOLD EFFECTS IN FM RECEIVERS WITH
RANDOMLY MODULATED SIGNALS

SUMMARY

The threshold phenomenon in an FM receiver which consists of an
ideal discriminator and a post-detection Wiener filter is examined for
the case when the modulating signal is a gaussian random process with
zero mean. For this type of modulating signal, the power spectrum
of the discriminator output noise can be obtained by an approach due
to Ricel. Three difference cases are treated: (1) the power spectrum
of the modulating signal is similar to that of a white noise passed through
a first-order low pass filter, and an infinite delay Wiener filter is
used; (2) the signal spectrum is as in Case (1), but a zero delay Wiener
filter is used; (3) the signal spectrum is constant in a limited band and
zero outside, and an infinite delay Wiener filter is used. It is found
that the carrier-to-noise (in the I. F. bandwidth) ratio at which thres-
hold occurs depends on the modulation and I, F, bandwidth. Graphs
showing performance near threshold are presented. .

1. Power Spectrum of Discriminator Output Noise

The signal transmitted to the FM receiver has the form

¢
£, cos{det +/0 | R(T) dT #
Q

in which @) , B , and oA are constants. The discriminator gain
can be determined as /5’" by requiring that its output reproduce the
modulating signal X (7) in the absence of noise.

Rice conjectures, Equation (2. 31) of Reference 1, that the two-sided
power spectrum Nop (w ), of the output noise of a discriminator with

gain ﬁ is given by*

wz VAR
/\/D(cu= {47 (N*+N’)+E_2 Wy (w)} SN

¥Note that one-sided spectra were used in Reference 1, and two-sided
spectra are used here.
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where £, is the carrier amplitude and A, and A_ are the expected
number of times per second that the discriminator input noise phase
increases and decreases by an odd multiple of 7 radians, respectively.

\A/_,(w ) is the two-sided power spectrum of the input noise component
in quadrature with the modulated carrier,

yle)=ng(t)cosy (e ) =n.(¢) swep(¢) (2)

where y(t ) is the carrier phase at time ¢ resulting from the modu-

lating signal, and 7, (¢) and 7 (¢ ) are, respectively, the in-phase
and quadrature components of the noise with respect to the unmodulated
carrier.

We are concerned with the case where the input noise to the receiver
and the modulating signal are both gaussian with zero mean. In this

case, Ny = A_ K The noise is also assumed to be white with power
spectral density &£,

We are going to consider two gaussian random processes having
different power spectra, but the same total power, as generating the
modulating signal. Let the power spectra be

2

S (@)= & ’T"‘_‘OK+K (= =<w< =) (3)
2 e
£, = 7‘__4-—9.— ) R, < [w]g 0,
\Sé ((Q))= (4)
0 , ELSEWHERE
where
n, = vn, (oswv<t)
= T
n,= I«
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RSRR————

so that the total power
+ o° +oe

P=£ [ Sw)dw= Se(@dw= S elk O

21)'

(The spectra have been normalized in such a manner that the total
powers are the same so that the results obtained will be applicable to
all cases.)

Let Brﬁ be the bandwidth of the I, F, filter which is assumed
to have a rectangular passband and to be phase compensated. The power
spectral density of 7g (¢) or Mo (¢ ) at the discriminator input is
then

26 For|al< T By g

(6)
0 FOR |w|>T 5,

and the carrier-to-noise power ratio, .2 , at the discriminator input

is given by
2
£o
= ——— (7)

In order to avoid distortion of the signal, the I. F. bandwidth must be
wide enough to cover all essential spectral components of the modulated
carrier. On the other hand, in order to keep the carrier-to-noise ratio
at the input to the discriminator large, it is desirable to restrict the I. F,
bandwidth as much as possible. If the signals were limited to an ampli-

tude 2 # and maximum frequency 2—77%—-‘- ‘5— » then &, would
be given approximately by
< Al 8
Be=—a7 24+ 5 (8)

Although the spectrum Sz (@ ) has no well-defined maximum frequency,
its noise equivalent bandwidth is /5/2 cps (two-sided spectrum), Since
the modulating signals, q (€ ) and 4(7T ), are assumed to be gauss1an1y
distributed, a maximum amplitude A cannot be rigorously specxf:.ed

*Distributions encountered in practice differ from true gaussian dxstn-
butions in that their tails do not extend to oo ,
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However, the probability that /a (z‘)/>/} or/4(T)f>A is given by

Plla1l> 4} = /- erf (s

which is less than 10~7 if we choose #=#[22. The requiredBy; for
this choice of 4 is, by Equation (8),

By =410 ZF + £ (9)

It is believed that when B is specified by Equation (9), the distor-
tion of the output signals due to the L. F, filter is negligible. Since one
may wish to choose a value of 3 different from (narrower than)
that specified by Equation (9), in the analysis we will use

EIF=”,”E—_/@ 2P + —5- (10)

with 7 unspecified. Defining € , a nondimensional modulation
parameter, by,

6= 45— JZF = -f— e (11)

Then Equation (10) may be written as

By = K(me+ L) (12)

For the case of a gaussianly distributed modulating signal, accord-
ing to Equation (5. 13) of Reference 1,,

! BIF _Uz
= — It 13
Ny T3 FAG /%244{2 U (13)
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4 rk e ek o A S AWOEIE N T

where

2 P

- , = S (LA P2 14
= CraEY <z (77'3,,:)9 (e

Since

/e"“z//fzauzo’a
174
/ md(-_e *)

/+2 Jdu
”z f7+ 2au®

and
o0
/ ~?
J 2 ¢ 7% 7# 2a4?
I
<

o0
__;7_.____’ £ «e‘”ao’a
P2 1520, 2
iy

- / e-,p /+2akr
2, (1+24P) 2

we have for large _P

Ny 2= L B P [/F2a

L 15
= 7z 27 (15)

which is the same as Equation (5. 14) of Reference 1.
value of N, given by Equation
the difference is less than

The approximate
(15) is higher than the exact value, but

/100
W per cent.
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of the approximate value.

By the use of Equations (12) and (14) one can
write (15) as

~ — 1 P A T \?
N, 4”,/?169@ //+ J/p(mf-?e)

According to Equation (7. 6) of Reference 1,
o

Wy (@) =2 | 7y (v)eRp ()= Ry (2)]

(<)

coswTdT

where

T By
_ 2 dw
R,,S(T)-4£,,/ oS wT S5
o

282

Ry (T)—= 265 6(T) A By —= o=

,{1;5(07)_ ;g«;;’("d")" =;/§’2/ "éz S(w)(/=cos wr) L2

27

/P¢(0)"?¢(T)= © FOR T =0

> 0 FOR [T/ >0

With S(@) = S, (w) as given by Equation (3),

2 o0
Rep (0) = Rep(T) = ﬁﬂf\“/j)—z st Z7 — wg:pnf e A )o/az)
o

|
3
S
“\
—
IS
|
Rr,\
A
+
hl\
I
n
t
o
~.
~
N
N
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P Be—— el SRt i 1k i e~ ww vaneien

and

ad 2.
¢, Y-
4 / -g—ﬂ kT~1+e )
Wy ((2)).:7 5,.’2 T e ( S/IVVB’;: T coSwT T
o

Wy (@) — 2&; 45 By —> o

With $(w) = S; (w) as given by Equation (4),

ﬂ?EZ {é/
Rgp(o)-/\’p(’f)=—7—‘— ;z(/—casw'z)a/w
L vE
el v 2 1 (L ps YTAT
v 7 eE v v/ v 2

i

m
>

2
~—

and

&2 75’—@"’(’)3/”73“ T coswTdw

]

4

Wg((e))=—7]7
2

Wy (@) —> 2 & #S &y —= =°

Since B, is usually much wider than the bandwidth of the output
filter (in our case, a Wiener filter), we will approximate

Wylw)= 26 , =2°< w< = (18)

for either modulating process, This assumption simplifies the mathe-
matics and, when used with Equations (15) or (16), yields results
slightly on the conservative side. The expression (1) for the discrimi-
nator output noise power spectrum now becomes
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2
Ny (@) = 2—52’0—(?2/- w?) (19)

4 Ep oo |, L r_\2
=Tk ss0e 1+ 35(mr 35 ) [By 16)]

or, using (7) and then (12),

2 _¢

2 2 T -P / 7 \2
z ————— —— — — 2
/ £ ri,—é(mfzg )fe /”‘gf(”’*zé) (20)
Defining the channel quality factor A, by
A o= RAel &f
0 2&F #*
2
_ & /2 2 _ &, 2_ 2 7\ 3
Ty Ry Yl (I ) L @)
finally yields
&z 2 2
~-—Ca :
No () = =7 (9% 0?) (22)

We note that ’}éa , given by (20), decreases rapidly as f
increases and its contribution to the mean square error of the output
becomes negligible for .# sufficiently large. In Chapter II, the con-
tribution of the ’;IZ term in (22) was neglected, and the results there
obtained are, consequently, applicable only for large_~

As A is decreased below a certain value, the }/12 term can
no longer be neglected and it has the effect of depressing the output
signal-to-noise ratio below the values previously computed. Further
decreasing the value of _© results in a rapid deterioration of the
output signal-to-noise ratio.
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2. Threshold Inve stigations

The threshold phenomenon will now be quantitatively investigated
for the following cases:

Case I Modulation Spectrum S, (@ ) ., Infinite Delay
, Wiener Filter

Case Il Modulation Spectrum &, (w ) . Zero Delay
Wiener Filter

Case III Modulation Spectrum S, (&), Infinite Delay
Wiener Filter

The computational procedure used to specify the Wiener filters
is the same as used in Chapter II.

Case I Modulation Spectrum S, (@ ) , Infinite Delay Wiener Filter

The frequency response of the infinite delay Wiener filter is

o1 s

With this filter connected to the output of the discriminator, the mean
square error between the filter output and the modulating signal is

/ ~ G (@) Ny (w)
Hoo = 27 S (@) /VD(Q(o) Jo (24)

—~ o0

Using Equations (3) and (22),

2
S @)+ N, (@)= Affaf wzléz{y AL #(por zoz)(ro?--f,éf)}

EL / £, .2 2,,4 3¢
= e 264 Yy (w + & W+ €& Aoy ) (25)
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where

2
4= £+ fr) (26)
4 é"( 4 s
Aoy = é, Ad fz-z-—) (27)
Then*
o9 2
/ 2,2 Y + @
Hoo = 77 & é/‘ ? 14  w? + 4] 2], o
-0
_ 1 2,2 2 r 14 ‘
= E (VB T ) TS 28)

Using Equation (5),

WA 7 ‘) T=,/_==
/./x = é’ AZ Abz/ 7 2 A‘I */ P

Usding Equations (26) and (27 ),

- ?”2/éa 2 2-7’2
//,.—(f* /A4+.w‘z/éz> aljaif'ﬂlfhzfﬁ #J/k P

Hence, by defining

2

§o=a0 st (29)
2 A
n o= /za,+/+~/&2: (30)
*

See Appendix II of Chapter II for the evaluation of the integral,
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"

the output signal power to mean square error ratio is

o AT W T
.

e ' %
H T rr o pE: Y
A

If we take Y = 0, this reduces to

P ) —
S =[222+/ =7
(H“ -0 ] 17

which is identical to Equation (158) of Chapter 1I. From Equations {31)

and (32),
P/H 0o
Roo = 10 L0E Pl M
- 10 (P/Hoo ),y’=o
7 2 222 47 4/4®
: = —[/azoa,a (1+ =2 2 )— 7206, =5 -z a7/

By use of Equations (20), (21), and (29), XK., can be expressed as a
functionof 2 , 77 and &

When f/é‘« x5 > 1)z, 32 = 2% and Equation (31) yields

_/{/D;Q‘ (’—_;T _3:!;)(/*2{ 2/A§ _74 );3

° #£
— (,_3 7 vz)
= (1-F 52 )

Threshold may be considered to occur when

P/H.
10 L0G, = = 10 LOG,, (/-4 )= —2D Jdb&
10 (P/Hao )vsa 70 ( )

where & is positive but smaller than 1, so that 2< 1. When

A LL Y » (34) applies for practical cases (where Af, > 72 ) so that

(31

(32

(33)

(34)
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threshold occurs when

3 / 2
—_ 12— = 35
4 A2 & 4 (35)

Substituting Equations (20) and (21) into (35),

P :
2 m &t e Z Y +L (mr L 2} ~

7 e (m+29 {ﬁ,fa(wﬁ-ze) = A (36)
where _4 indicates the value of # at threshold. Defining

6= (1+;Z )[_ZL,L_/.<,+ s )2]

2me m2 3 2me

and taking logarithms, one obtains

A= —1 (40@—7 —2L06D +35L06m +L06 b + 1,066 )

2 LoGE@ 2 (37)

Thus, one canfind A for given »m and 6 by trial. When 4<60 £1024,
ma 2, andA s ,045 (or2< 0,20), log é varies only slightly so
that #  varies approximately as log & for fixed m

Case II Modulation Spectrum Sg (w) , Zero Delay Wiener Filter’

In order to define the transfer function of the required Wiener filter,
we first find a realizable frequency response Y, (w ) which satisfies

/
So (@ ) * Ny (w)

Y (@) % (@) =

Substituting (25) in this,

— .o bz )4 wZ *‘62
Y, () V' (@)= 5,‘° w?+ b; w* + 4 Af,

Therefore,

- (a)-hé)
Y, (@) = & (w-8-¢8 ) wr+t 8 -8 )
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where

8’=

We next write

Ya (AU) =

p —
—3'—/_2_2,,,7#/ , B =

Sa (@) /

LA

S (@ )+ Np(w)

=/ Ea k.' Aoz

% (@)

/

(w-ct)w-8%+ 8, w+ 8, + ¢ B )

. s 2 a, 2, 43
=& £ Aq (a)—('t * @-8, +¢ 8 @*6’3#(’3, )
where
- ! _ /
4 = (8,8 -k \-8-iB —c&) ~— #A2U+27+7)
a 7 —a Bat B, ok
2T 2B, (B-iB -ik) ’ 25,
- 4 _ ‘BZ—(.IB} - (‘,é_
Q - 282 (32 f('B/ f(L) a’ 252
Since
o0
. -kt _~iwt /
/(‘ e et = 0
[~}
and

]
. AL -t /
\/(*te‘ )e | 7 = -7
—oo

(4=2 Bo-:8, )

the impulse response corresponding to the frequency response Yo (a) )

forz » 0 is

Ka(t) =

86

('€4 é" Ai ﬂ' (le-ét )"

£,£ Ao okt

T I AT

(38)
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Our next step is to find the frequency response 'Ya (@ ) corresponding
to the impulse response

A (¢ ) FOR ¢ 20

As(t) =
O FOR ¢t<0
Thus,
z ooéf ¢ E & AT /
_ Cak 25 - -l _ )
X’(w)—/"ﬂ;"ﬁ € ¢ o/z‘—/f-/lff-?; (w-ik)

Finally, the frequency response of the required zero delay Wiener filter
is

Blw)= Y(o) Y (@)

Y . 7
1A+ T (@-B-iB (wtbe-i b )
_ 42 X 4
T JEAS T — @+ 28,0 +4° A (39)

With this filter connected to the output of the discriminator, the output

N, due to noise is
oo

2
N, = }LW‘ /Vo(w)/y ((o)/ dw
_ 1 &N v’ £ @ o o
EY4 (/fz, + 5 a)fft, w? + 4F AL, (40)
By comparing this with (28) and then using (31),
2o
No = BRIk H oo
_ AL LB )L
TR (1)
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The contribution to the mean square error of the output due to distor-
tion is

o0
P , 2 (42)
2 = ?ffaé/m?/"yﬂ‘“)/ de
-0
Since.
2 47 8 7
//-—)’,(a))/ = /f(/+),2+r,)2 W +£F @?+ &) 2L,
. S Yor vt W,
1+ 24T ot AR w87 2
— et —22 w?
= rEAT A, Wk O F AR
_ ot —2 <_432.3< AL ) /
1A% + 7 AD T Al | @tk AT 20
_ a2 T, 222
Do“zﬂ-g“'é[,é+’é TFAE T, O
4 2 2 4
.1 As ( A Ao o \ (43)
A TR\ T 4R H),W?',)C"}

where

co wz
C’z = (cu2+/ez)(w’+;é,2(¢)27‘é‘,' ):’) Jd w

— s -&* ! B2 ti5y
—2”—‘[ lzk(k,’.;{:,) * L.BB,BZ (827“4'3;)2 "“éz

e Bz + ¢ B/
(-B24c8 )2 + 4%
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T 4/4 Y/ /
- 7?{ 2X #1 Xy A — (& JE5-1) AL AT (44)

and

(7]

Co = ) Z 4, z, 2 4 .7 do
° (@ + £2 N+ 2 @2 r 4] 2L )

.y - ]

I
3

L, (& +:8)' , (B = cB)
k! 2!, 7 4B B cz—éf/2+z‘2ﬂ,5’2 £°-#,[2 -0 2B B,

- / !
€5 Doy ki f82| 2g kAP

' /> 25 A%+ (hFfe-1)
2257 + 1 My KK —(k]fe* 1) (45)
Using the definitions of #, , A, , A, , and 7 , one finds
' B

5 € At =T

2
2 'é/
Aor Wl

A7

” (46)

éz ’;bz

& T i

LYl HE A A W
i (i" ! )_ Ao

so that

_ T 1 AfAT 4 >
CZ_ éS(?; A4 A4 (47)
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A o m i s e i e

= 7w w7
/ !

Using these values of €> and (, as well as é‘f /2 = P )
the expression of D, , Equation (43) becomes
- 2 (APt M
D""P{’*Hazn—( 7 ,1,‘)
_ / (2 2 24 > Ao reYe )
_—t —_— -
1+ A+ % P orrar L AT A° 7,
or
Do _ 2% gt vt s
P (1# 27+7,)7 AL 7
! 22
14 %,:f'ﬁ{ Ai, (227~ +Az+‘r *2)_27’}
- P /m,,w, A /fx,+r,’ “237}
Hence, the total mean square error of the output , Ho , obeys
te_ Do _ Ng
F P £
4 4
, 2 A 2 Aa
= 1 X+ 3T - — —t— s
1+ A ;‘?}{ & % Al (2 % 1r 2t 17, 2 )}

_ 1 A 1+ A y_/"'
= wffr,[(s B t}

90 RADC-TDR-63-147



so that the ratio of signal power to mean square error

P %ffarwz
= — -
“ - B
' ’

If we take ‘y/ =0 , then A, = Xy, 7= {2 Zzo +?7 = 7, , and
the above formula reduces to :

<1°> _ A2 inmts _ (Brs)?
w=0

Ao 2 % - 4 7

(50)

(51)

which is identical to Equation (180) of Chapter I . Thus, we have

P [Ho
Ry = 10 Lo6,
0 0 (BfHo )ye o (52)
4 2 ]lz
N T s (G- ;j)%* A/I*E/ 42
=/0405,0W—/04% z 7,

so that, by using (20), (21), (29)and 7, = y2 )s,z + 7 , one can calculate
Ao for various # and given » and ¢

Case III Modulation Spectrum S,;(w ) , Infinite Delay Wiener Filter

The power spectrum Sb(w) is given by (4), and the required
frequency response of the infinite delay Wiener filter is for this case

56(41))
Sy(w) + Np (@)

Y(w) =
or, by (4) and (22),
£ A0
2+ (1-v) (¥t @F)

T T
FOR v & s/w/s—é-,é .,
y@) = 53
O ELSEWHERE

The mean square error between the filter output and the modulating
function is then

o0
-ZL”-; Nylw) Y (w)de

-0

Hoo':
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v
e o e S AR
.

A
= _-—6“' e f : bt dw
2 RN +(1-v)(p i+ w?)
w

F#

s [T [ 1 A 1
?V'gl‘ 1-v I~ AP +(1- v-)()ﬁz'l-w‘)

éwz{ ZA‘I/(/ U)L

- TAN Ffz;-_tza.'/_* Vz )

/ 7 'tZA Ay (TAN _/_L zé‘)\ eyt

Let (A-8) = TAN—'Q' and using ¥ =

2/m Aot
Hoo = P{’ (1-v)V2 Jaf + (1-v) pi/A2 T :}
where
- (f v-)/1/7\"+(1 -u-) Y& A%
“+(1 V) Yl RE F - ) T TS
Define

2
7\:5 7\: +(1-v) ‘.E‘i
Then, (55) and (54) can be written as

7Ty, 032 1
;'?(' v) N rrz(f -v)ufa,¥

and

P 7\:+,§_Cz(/- ) v

Heo  (1-v) %”_: + —Z—"(/-v-)v+ 2."(1-'1!15)

- TAN A-TANB
TAN (4- B) TAN A - TAN8+1

(54)

(55)

(56)

(57)

(58)
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If =0, then ), = 2, and (58) reduces to

2
): 7‘";Z(/— v U

)
(-— - (59)
2 —7
Hao ?1/:0 7?7_(’—7f)zj_+ )z(/__%i)
0
where
T 2 7 ~ (60)
$o = 2 - Y Ao I+ F7*(1-v)v/Af
When /\o 2 30 (which holds for most cases of practical interest),
$ < Do, S, < Tko, and
_I,_ g _7° v/t < T r® . 7
so that
ran 'S 7% (-vP a5, ., Tt (r-)E
and (58) and (59) reduce to
2 ):/(/ v) 1)
Hoo - \2 77'2
—Z;_— + 5% - F— v
A /z ( T,
P /2 /
= 62
(Hoo >'y/=o 7}" e y—s Ao ( )
Then
P/ AR /+ v Frt ©3)
(P ]Hs Y ;‘ Moo 2wl L Al 2
-U) A3V
Y= S 2 —A?( )

Threshold occurs when this ratio decreasesto( /-4 ), & bgzng a
positive number much smaller than 1. Thus, at threshold V/é < x:,
so that )"/ ), = 7/ and threshold occurs when
/
/2 / v?E
"7 v v 42

tL T 2
-Zr~ ~ (/7‘?/’7‘?/’2)/_

£

>~ /- A

or

A (64)
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Using this relation together with (20), which expresses ?Iz/tz in terms
of # , m and 6 , one candetermine 4 , the value of # at
threshold, as a functionof 77 and & by trial or graphical methods.
We note that (64) would be exact, if 7

-
\/(zo):{ ! FOR v k<[of< 5
O ELSEWHERE

instead of (53) were to be used as the frequency response of the output
filter.

3. Discussion of ‘Results

The main purpose of this investigation is to investigate the behavior
of the output of an FM receiver in response to a stochastically modu-
lated signal in the threshold region. In Figure 1, the decrease in the
ratio of the power of the modulating signal to the mean square difference
between the output and modulating signal below that predicted by the
large carrier-to-noise power ratio theory has been plotted. For the
range of parameters illustrated, it is evident that the deviation is neg-
ligible for values of # , the ratio of carrier power to the noise power
in the L. F, bandwidth, greater than about 11 db, and that the threshold
occurs in the region of A between 7 and 10 db. Recalling that the
I. F. bandwidth, . B i(me ) _77__\)

TF /e 2

which for large 77 & is proportional to 7 & , one notes from the
figure that the deviation from the large carrier-to-noise power ratio
theory is more rapid the greater the I. F, bandwidth, as one would expect.
The apparently gentler behavior of the M= # ,6=464 , O delay curve
compared to thew= # , O= 64, 20 delay curve is explainable as
follows. Since these cases both have the same I. F. bandwidth, the
discriminator outputs are identical. However, the zero delay Wiener
filter results in approximately 6 db more noise output power than the
infinite delay Wiener filter above threshold. For any rate of occur-
rence of impulses (N4 + A/~ times per second) or for any value of

#/ , the relative (db) increase in noise output power is less when the
zero delay filter is used than when the infinite delay filter is used".

On the absolute basis, the infinite delay filter will always give superior
performance. ' This phenomenon is more clearly demonstrated by
Figure 2 where P/H and (P H ly=o0 are plotted a&ainst the channel
quality factor X% . The channel quality factor A, may be

*
Because the ratio of the noise equivalent bandwidth of the zero delay
filter to that of the infinite delay filter is less than 6 db.
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expressed in several ways in terms of the other parameters of the
system. Thus,

v o E2eE
9 2 {\”2 éz
£o /2 @* P
287 k2 4%
_ ERf2 6%
T o2& 42 2
Zre 2
/2 e
2 T
= 7 (m*25 Jeie
where
6= v 2P £ & modulation paramet
=7 o Y & ceen p er
EZ/2 :
L= 5 .... carrier-to-noise {(in I, F. bandwidth
2 & By Bry) power ratio
£ £ .
= = —— .... L F. bandwidth
B]F T e+ 2 anawi

These formulas permit ready conversion of plots of //7’ versus A7

agamst other parameters, e.g., to co—z_ert from ), to I, F. carrier-
to-noise ratio, ' © db subtract 10 log[-&~(m + 77’/26 6’] . From the
first expression for 20 , it will be nofed that )o is independent

of n , the parameter which established the I, F. bandwidth, and hence
for fixed modulatlon (1.e , for fixed 3 &, and £ ), the channel
quahty factor 2% is proportional to the ratio of carrier power to
noise power density.
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o st v Anmbi ¥ s 3= 5 e

Figure 3 illustrates performance near threshold for band-limited
modulating signals with two different power spectra, corresponding to
=0 and V= 1/2 . The two power spectra‘are shown in the insert
of the figure. It might be mentioned that the curves shown in Figure 3
are practically unchanged if a sharp cut-off filter, which has frequency
response p P

1 PR vk Sjw[&T-4
2 2
Ye(@w)=
- 0/ ELSE WHERE

is used instead of the Wiener filter.
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APPLICATION OF INFORMATION THEORY TO BOUND THE
PERFORMANCE OF COMMUNICATIONS SYSTEMS

S e e S PRI ISR T < A
.

A question of continuing interest is to what extent the theorems of
information theory can be applied in order to establish bounds on the attainable
performance of communications systems, Although a simple or complete
answer to this question cannot be given, some preliminary results which we
have obtained are presented. In the process of doing this, we also hope to be
able to dispel some widely held misconceptions.

As background material, we will very briefly review some of the
terminology, theorems and results of information theory., The proofs of
the theorems and derivations of the results can be found in the references
which are given,

We shall assume that all proceasses with which we are eoncerned are
ergodic, * The most important properties of an ergodic process for our
purposes are; that any sample function of the process observed over a

. sufficiently long time exhibits a behavior typical of the process, and that

time and ensemble statistics are identical. In the case of a discrete random
process, such as a sequence of digital data, only a finite number N(7) of
sequences having duration 7~ seconds have a nonvanishing probability. The
rate of generation of information of such a process is defined as

R = limé‘l’_(zz

7 —»co 'a (1)

The capacity C of a channel is defined as the maximum rate of transmission
of information of which the channel is capable. The fundamental theorem of
information theory states** that it is possible to transmit information at a
rate £ £ C with arbitrarily small probability of error, but that this is im-
possible if R > € . In order to achieve rates very close to channel capacity,
very lengthy codes (the explicit construction of which is not known in general)
may have to be used. The fundamental theorem applies to continuous as well
as to discrete channels,

- %  The properties of an ergodic process are discussed in Reference 1
(pp. 15, 57) and Reference 2 (pp. 67-68).

*% Reference 1 (pp. 39, 67)
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Consider a channel in which the transmitted signal 2 is perturbed by
an additive noise » so that the channel output y is givenby ¥ = Z +»n ,
Further, “let the bandwidth of this channel be restricted to W cps and the
mean square value of the input (%2> = 2 ., Then the capacity of the channel
is bounded by '

W 4n L;/TN-L £ C & Whn 'D/;,N )

where N

Ny

average power of the noise
entropy power of the noise

uou

The entropy power AN, of a random process is a measure of the random-
ness of the process, White gaussian noise has the greatest entropy (randomness)
for a given power and bandwidth of all random processes, Entropy power of
any process is defined as the power of a white gaussian noise having the same
bandwidth and entropy as the process under consideration, Therefore, we
find that for white gaussian noise, the entropy power AN, is equal to the
actual power M and for any other process, the entropy power is less than
the actual power, If the additive noise is white and gaussian, the upper and
lower bounds in Equation (2) are identical so that

- P
¢ wen(1+5) (3)
which is without a doubt the best known equation of information theory.

In analog communications systems, one is interested in reproducing a
continuous waveform presented to the input of the system at the output. Since
a continuously variable waveform can take on an infinite number of values,
its exact transmission would require a channel of infinite capacity. In practice,
one is not interested in reconstructing a continuously varying waveform exactly,
but may instead decide that the communication system is satisfactory, provided
that the mean square error between output and input does not exceed some
specified value, say A, . ANV, may therefore be called a mean square error
fidelity criterion. Satisfactory communication can then be obtained by trans-
mitting instead of the actual waveform produced by the source, one of a number
N (T) of preselected sample functions of duration 7~ .. the sample functions
being selected so that the mean square difference between the sample function
and the actual waveform is less than ANy . The rate of generation of infor-
mation is then given by

R = /[m_/é"M

= co T (4)

* Reference l (p. 68)
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where N ( T) is the minimum number of sample functions required to satisfy
the fidelity criterion A{c + This rate is bound by

W; bn -,% SR & Welbn E (5)
where P = power of the source
P, = entropy power of the source
No = permissible mean square error
Ws = bandwidth of source

By the fundamental theorem of information theory, it is then possible to
transmit continuous information over a channel of capacity C with a mean
square error not exceeding A, provided that C 2R where R is given by
Equation (5), If the source has the statistics of a white gaussian noise process
then the upper and lower bounds of Equation (5) are identical and

R = W, tn N (6)
Ne
Suppose now that the communications channel has a bandwidth W,y , signal
power /£,y and is perturbed by additive white gaussian noise of intensity
N, watts/cps. The capacity of this channel is then

Fen
Cen = Wou £n (1+ 775 T ) (7)

The information rate & which can be transmitted over this channel is then

R £ Coy (8)
Substituting Equations (6), (7), we find
W In == £ Wy In(1+ (9)
s Nﬁ CH ( NO Wt‘ﬂ)

which may be solved for -/—VP— to yield
<

* Reference 1 (p. 80)
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Weu

P . (/+ Py _Ms )
Ne NoWs  Wey o
= Peu_ /)
Fen
Lim P, oMo We
n—e Np —
with » = L:/-‘i = bandwidth expansion factor,
s

It should be carefully born in mind that Equation (10) applies only to the case
where the source has the statistics of a white gaussian noise (since we assumed

P; = P )andthat N, is defined as the mean square error between the
output and input waveforms.

If the input source does not have the statistics of white gaussian noise,
then p

R L Ws N (11)
Satisfactory transmission requires C 2 R so that
P Pew
h/s.&n.-&->k £ C= chlw(ﬁ#m
P _Fen_
w2 (1+ 5 Ny Ws )
From (12) it is clear that this approach will not yield a generally valid bound

on the maximum value of A/N; which can be obtained by use of a given channel. *
On the other hand, using the lower bound of Equations (5) and (8), we find

(12)

W fn - < R £ Cm Wy Sn (1455

W SR

n
% < (1w =)

. P> Fen
-l‘m 1 . e No WS
n —» o N; =

No ch ) l(13)

Equation (13) is a valid bound for the maximum attainable ratio of source
entropy power to mean square error between the output and input of a system
containing a channel perturbed by additive white gaussian noise, Equation (13)
is plotted in Figure 1 with n as a parameter.

* Numerous attempts at deriving an expression for the maximum attainable
signal-to-noise ratio at the output of 2 communications system are recorded
in the literature, References 3, 4, 5,
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In connection with Figure 1, it is again emphasized that signal power
and signal entropy power are equal only if the signal has the statistics of
white gaussian noise.

In order to gain a better understanding regarding the relationship of the
above bounds to the performance of practical communications systems, let
us re-examine the manner in which the bounds were derived., The central
idea used in the derivation was that of coding which would involve a delay at
both the transmitter and the receiving terminals, At the transmitter, an
entire sample of duration T is obtained from the random source and, then,
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PR,

the closest of the N(7) sample functions is selected. A code word repre-
senting this sample function is then transmitted*, perturbed by noise, decoded,
and the waveform corresponding to the code word reproduced at the receiver.
If the channel signal-to-noise ratio is improved and the same code used, the
mean square error of the output remains unchanged., (Actually, only the
probability of error, which is already assumed arbitrarily small, decreases.)
These characteristics are in sharp contrast with those of communications
systems using modulators and demodulators which have essentially zero delay.

% Note that the characteristics of the coded message need not be simply
related to the original waveform; they are, in fact, determined by the
characteristics of the channel,
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TRANSMISSION OF ANALOG INFORMATION
OVER A DIGITAL CHANNEL

INTRODUCTION

The transmission of analog data by means of a digital data link is a
practical technique whereby a desired output signal-to-noise ratio can be

‘obtained with reduction of transmitted power but at the expense of increased

channel bandwidth. Furthermore, the digital system is adaptable to a
variety of digital coding schemes which have been developed for purposes of
security or antijam protection. In this chapter some of the characteristica
and limitations of such sy tezns will be investigated and compared with
recent work by D, Slepian’'® which establishes bounds on the error rate
performance of the digital link.

Commonly, analog transmission systems are compared on the basis
of the output signal-to-noise ratio attainable with a specified channel signal-
to-noise ratio, while digital systems are generally analyzed in terms of the
probability of error as a function of the channel signal-to-noise ratio. In
comparing discrete and continuous systems, or in evaluating the performance
of analog-digital-analog systems, it is desirable to establish a relationship
between an equivalent analog signal-to-noise ratio and the corresponding
error (quantization error and errors due to noise) of the digital channel.

In Chapter 1V, it was pointed out that, in general, it is not possible
to apply the theorems of information theory in order to establish performance
bounds of analog communications systems in terms of the channel and out-
put signal-to-noise ratios. However, when a specific digital system is
employed for the transmission of analog data, such relationships may be
developed which are useful in comparing the performance of the various
systems.

First, it is necessary to establish a reasonable definition of ''signal-
to-noise ratio''. Although we have not been able to obtain a universally
applicable definition, the one adopted below is reasonable for the systems
under consideration and is also consistent with the signal-to-noise ratio
properties that one normally would require for the linear system shown in
Figure 1.

In this linear system in which independent noise is added to the input
signal, one certainly expects the signal-to-noise ratio at both the input
and output of the linear amplifier of gain X to be S/ , where §=¢x?%)
is the input signal power, and AN =¢n?) is the additive noise power. Note
that by requiring the output signal-to-noise ratio to be independent of the
linear gain, we rule out defining S/~ as the ratio

signal power of input signal .
Tn%an square dilferenc eertween oufput and input
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n
<nt)= N
FIGURE 1

In the linear case, we could get the desired result by taking the ratio of

output power due to sigLnal only .
output power due to noise only

However, such a definition fails when there are nonlinear devices in the
system and also gives unreasonable results when a linear filter is interposed
into the system, We have chosen to define the output S/N as

portion of output correlated with input
portion of output uncorrelated with input

which appears to have a greater range of applicability and, also, gives the
desired result for the system shown in Figure 1. Thus,

S 2
N =T )

where the correlation coefficient L is defined by

2. Sx2?
P23 D 2)

Now, consider the system shown in Figure 2.

n
apn = aft=4,) 1 2 Y4 ¥t)
DIGITAL ——
a(t) — SANPLE QUANTIZE [—o~ 2ARLIAL ol FiLTeR (8/N),
FIGURE 2
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Let a(t) be a random function of time which has zero mean and is
limited to a bandwidth W, . By the sampling theorem, a(¢) is completely
determined by samples @, taken once every seconds. Let the
samples be independent and uniformly distributed over the range t -gﬂ .
From each sample, one of ## quantized samples, z; , is generated as

follows: If x;— % £a,< "a’*% , then
, M=-1 ,
x"-A(L‘—z—); £=01,2---, M-1 (3)
Each z; is transmitted over a digital channel and received as Y with
a probability P(Vk [#;) - The sample y, is given by
-/
g =Ak-%T): k=0.1,2,-00, M-I (4)

Since a(#4) is sampled at intervals of 7%7;' seconds, the samples ¢, occur
at this same rate. They are passed through an ideal, unity gain low-pass
filter with bandwidth W, cps, and the system output ;(t) is formed. * Note
that the analog input to the system is a(¢) and the analog output is 3(¢) ;
however, they are completely determined by the samples a, = a(¢= s
and y, (éc-znw;)-}(ta L =9, , respectively. Figure 3 shows the rela-
tionship between, anme range of the variables in the system of Figure 2.

The performance of the system for transmitting analog information,
described above, will now be obtained in terms of the error rate performance
of the digital channel. First, a conventional binary PCM system using an

* [ ) [
i (2W,% -
0022, 00 R "k vt
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optimum bipolar binary keying technique will be investigated. Then the
performance of a similar binary PCM system will be evaluated under the
assumption that the transmitted digits are scrambled so as to produce a
uniform distribution of the errors among the incorrect levels, Finally,
these results will be compared with performance curves developed from
the recent work of Slepian which established performance bounds (proba-
bility of error) on digital systems operating over a noisy channel.

Since we are concerned with an analog communication system, the
system performance will be described by the relat1onsh1p between the output
signal-to-noise ratio (S/N) and the channel signal-to-noise power ratio.

Then, from Equation (1)

(N -p (5)
'/o
where
R N o
2 "a®)y?) "ol

or in terms of .Vk(hz_v%_) = %n = Yx

z_ (a”y,)
L= {2, ><ydD <Y (7)

THE PCM CHANNEL

Consider a PCM channel where an »n -bit number represents each
of M = 2” quantized levels to be transmitted. Since a sample is formed
every TW— seconds, the number of bits generated per second is 2W,n
Assummg bxpolar keymg, each bit is received with a probability of error

per bit, ¢ , given by3
¥4
=—=(1- 7‘——2 8
2(/ érf M,) ®

where £ is the energy per bit and A, is the noise power density. Since
the transmitted power $§ is equal to 2W,nfF ,

7= (1- crf’m) £ [1-ers é(—,f/)‘] 9)

where (S/N); is the channel signal-to-noise ratio with the noise referred to

* oo /s jak
alt) -; a, sinct, and / sinc € sunc €y dt = {0 ; J

%,
Since
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a bandwidth W, . In bipolar keying, two bits may be transmitted per cycle
of output bandwidth; therefore, we obtain na W/W, , the bandwidth expan-
sion factor.

We now proceed to find o in terms of g the probability of error

‘ +44
(az)"'f"/*qi‘da. Ll M
" MA_%A" "HAS | T 2

{
Since @, is uniformly distributed, o(%;)= v

per bit,

(10)
, therefore
2

1 &+ B, et ATET, . (M-1
<Z"‘>=A-;Zﬁ;‘-‘7 §<-T) -Mg:; z '(M-/)c-ﬁ—T-L]

i=0

=5_‘_[Mw-f)(m-r) _(M-0M u(u-r)zJ
M 73 2 4

: = —'—‘j(Mz-/) 11
77 (11)

M-I M-1 M-1 o-1

=Y )7 Plalm) Pyt = 3 20 3 Pl %) 4 (12)

i=0 ka0 r 21/} =0

Since the bit errors are independent in binary coding

P(Vk ’”i) = (’_7) Tik q(""'{"’)a F(y‘ Izk) (13)

where Pik is the number of correct transitions.

Therefore, g M=t et
2
e M ,Zz P[5 %
¢ &t = Al
',r,’ki: g% - ,,—',‘f xi' = <g') == (M*-1) (14)
- 0

where use is made of (3), (4) and (11).

111 RADC-TDR-63-147



To obtain (a,y, » . we first obtain (a, .‘/k>,' which is the expected

value of 2, ys given that »; was sent,
A
XtT wet
Gt = [ D antep @ns i |%:) day (15)
z‘- .?_ 120

Since %; is being sent, p(yk ’x‘,,a,n)=p(9k/x‘.) and p(@,]%;.¢ )= p (ayl%;)

therefore

2t 4 p-s
Cniy= | g 2o onserlulndp @ules)day
o "o -
. [:Zo ”‘P(y"/zi)][‘[s-g (o] %)ty
=i % (16)

Before summing on x; to obtain {apyx) , we must evaluate’ <gk>
The binary number [ representing »; may be written as

" .
n={
Z-Z o, 2% where &, is either 1 or 0 (17)
4:0

Using Equation (4), we may write

M-1
<y = A{<wn - *F (1)
Let dgx =0orland ds; =0or]lbethe o7 bitofthe » -bitcode
representing k and ¢/ , respectively. Then

n-1
k-i = )" ok ~daid; 2°
<=0

n-f7
Ck-i); = D Kcg ke ~dai); 2° (19)

~s0
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Since - PP d,"“n> - [(1-q)x0]+ qu 1] =q given d . =0

and <do.k -d“;> - l:(f"q) X 0_] + l-_QX(-f]‘ =-¢ given &

we can write <d4’k -do.i>l' - (1 = 2d’4.l' ) 9

net n-r n=1
Therefore <k-i); = Z(/‘Zdo‘,;)?‘?" ?ZZ“" 272 %, i e*
2z=0 R Y 4=0
<k-ip; = g{M-1) -2,
But Ck-id; =k - i

Therefore <k); = i+g@(M-7) - 2¢;

From (18) and (22), we obtain

e = A{“)l ) Mz;’} A {H g(M-1) -2g¢ - "’"}

2
., M- , M-1
=A{(z- L) - 29 (:—2—)}
=(1-29)A(i-27) = %, (1-29)
where use is made of Equation (3),
Using (16) and (23)

@ i = <gudi % = #;°(1-29)
Therefore <a,¢,) = (1_2?) <6£2>
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We may now obtain  0° for PCM by combining (7), (10), (11), (14)

and (24) .
Can i) - 29)*<x;?)"
TAT
@Dy A Co; >
. /2(/-22)‘ At
S TmM%?
Using the definition for (S/N)o , we obtain

(i _ PP (MP-n(1-2¢)%
NI, = 1-p%  ME-(MZ-1)(1-29)*

Pt =

(M" 7) = L(1-29)%

Using Equation (9) for bipolar keying

(1-29)= ""‘”’7#(‘5‘)5 ) "’7?%(%);

Therefore, for binary PCM using bipolar keying, we get

(%> 3 (M2-1) nﬁ-/%;(%)ﬁz

M- (m%-1)|erf z%(/vi), ]z

Equation (28) is plotted in Figure 4 for » =5, 7, 10 and 13.

A MODIFIED BINARY PCM SYSTEM

It is of interes:. to obtain the performance of a binary PCM system

where the errors are distributed uniformly*. To do this, we obtain

the probability of error in transmitting an n-bit character using PCM with

bipolar keying

pet-(1-g)

Equal probability of all errors can be assured by making the assignment
of the sampled values ¥, , to the transmitted characters, at random (of

course, the assxgnments must be made in unison at the transmitter and
the receiver),

(25)

(26)

(27)

(28)

(29)
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Knowing ¢ , as given by Equation (9), we may plot Qp vs. channel signal-

to-noise ratio %(S/A/)i (Figure 5). Given the character error Qp and the

assumed distribution, we may write, paralleling the approach used for
normal binary PCM,

M2a2
<a'nl> = ,2

2y o ALy
%% = - (M5-1)

M=-1 M-1

<y’ = 73.-20 ,‘Z.; Pl %)y

'F; ffp(gk;t;)u:

ks0 is0
Since, when an error is made, it is assumed to be equally distributed

Plyx %) = ply;)2k)
and < . g Mt . . Aa :
Yk =,‘—4ka.0 g’ =<%°) = 72 (m?-1)
As in conventional PCM from Equation (16)

Cap g Di = % 4yd;

In this case,
]

<y = (1-Qply; *M—.’;; 7

| Kt
Q M
= (-@p)y; - 255 di = o ("QP,;,-:,-)

Since g =z

Con i = o {1-0p 2

and 2
M 2
apye> = ("QP a=7) <K

Therefore, from Equations (7), (30), (31), (34) and (37)

2 _ Syt s o M\ mi-y
2 =< <’ QP'&I'?T) M2

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)
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From the definition of (5/#), , we obtain

2

() . M0 (1- @at%7) (39)
= M 2

No M’-(M‘~l)(f—Qp——M_’ )

The probability of character error, @p , versus the channel signal-to-

noise ratio, %(S/N)i has been computéd for binary PCM and is plotted in

Figure 5. Using Equation (39) for the modified binary PCM system and

the Qp curves of Figure 5, the output signal-to-noise ratio (§/), has been

plotted versus ($/#); in Figure 6 for values of n =5, 7, 10 and 13,

COMPARISON WITH BOUNDS ON DIGITAL SYSTEMS

D. Slepian,in two recent papersl’ 2, has applied some of Shannon's
results to obtain a bound on the error probability in the transmission of
digital data over a noisy channel. Slepian presents curves which give the
minimum channel signal-to-noise ratio required to obtain a given proba-
bility of error, @ , for various values of n and /W , where n is equal
to 2W7 ( W = channel bandwidth and 7 is the coding delay) and R/W is
the information rate per unit of transmitted bandwidth.

In the case of PCM, the delay time, 7 , is equal to the sampling
period and, hence,

ne 2wr
[ W (40)
"W ~ W,
Then, e 2w
(4
W= W M
2 _2 n
= 'ﬁ'@ro”‘ 7‘09102 = 2log,, 2

¥ 0.6 (41)

Since @ is the probability of error in the transmission of a code word T
seconds long, it is equal (in the PCM system where T = 2_M17— } to the
probability of error in the transmission of x; °

Figure 5, obtained from cross plots of data presented in Reference
2, shows curves for Q versus -,’T(S/N); for various values of n .

In order to obtain an output signal-to-noise ratio from these curves,
we make the assumption that when an error is made, it is uniformly dis-
tributed among M-1 levels. (As was previously noted, this assumption
may always be satisfied.) This allows us to use the intermediate results
obtained in Equation (39) for the modified binary PCM system.
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Hence, (MZ'/)(f'QDA:_/)z

(), = meon (- T
o mi-mt-1)(1-Q%%7)

(42)

Equation (42) relates the output signal-to-noise ratio to the proba-
bility of a character error Q . Using the @ curves of Figure 5 and Equa-
tion (42), the output signal-to-noise ratio versus channel signal-to-noise
ratio (S/#); has been plotted in Figure 7.

CALCULATION OF RATIO OF SOURCE ENTROPY POWER TO MSE

In Chapter IV of this report, bounds on the maximum attainable
ratio of source entropy power £ to mean square error (MSE) have been
presented. This ratio may be obtained for the systems under consideration
in this chapter and compared with the results shown in Figure 1 of Chapter
IV. The entropy power A, of the source is defined by

7 an’
G = 2re ¢
where #’is the entropy per degree of freedom of the source. Since the
samples of the source are independent,

H* = - [p(ay)[in p(a,)] de, (44)

(43)

with

{ MA
A lan| < S
p(an) = (45)
0, elsewhere
Then +%A
H’ = -/ —/—(ln-—’—)da, --inl (46)
Jua A\T HA] 0 MA
and combining (43) and (46),
4
1 2lnga _ 1 _in(MA)?_ (wA)® (47)
R =zre ¢ Zme® T Zwe
2a2
Since (@, = 214 (from (10) )
P, =2 Capt) = 0.708<a,®) (48)
and
A, <an®
LAY A >N 7
MSE 9.708 J5E (49)
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Figure 7 PCM PERFORMANCE BASED ON DiGITAL BOUNDS FROM REFERENCE 2
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In order to minimize the MSE, 7 is modified by a gain factor A .
P 2
MSE = (@, -2g)) = <an') + Ay") - 2a<apyi) (50)

From (24) and (37) and since (g,f) = {y; "}

MSE = Ca,2) + A% %) - 2A¢ x> (51)
where ¢ = (/- 27) for conventional binary PCM with bit error rate ¢.
and ¢ = (1-Q -—"!—) for PCM with a uniform character error

M-1 distribution,

To minimize the MSE with respect to A ,
o%\(MGE) = 2AK22) ~2g<xiH) =0
from which A=¢

Therefore, the minimum MSE is given by

MSE = La}l) + 8%x") - 29%e") (52)
Then ¢ 2 Can®> y
an _> = n - ———'——""'—'K‘¢
MSE " Za - 970 T g-ge 52
n
From (10), (11), (30) and (31)
<g» _ Mi-v
Q, 2 M2
and, therefore, <@, >
<an?) — 53
MSE 1- 2221 g2 (31
For the case of conventional binary PCM,
A 0703
= (54)
7.
and for modified binary PCM (uniformly distributed errors)
Ay 0,703 (55)

MSE M‘—/(,_Q_L_)
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and for the PCM system based on the error rate bounds given in Figure 4
(Q curves)

i - . Mz-oz'7f.3 )
e (179 75

Equations (55) and (56) are plotted in Figure 9 for » =5and » =10
(M = 32 and 1024) along with the bounds obtained in Chapter IV,

(56)

SUMMARY AND DISCUSSION OF RESULTS

The application of PCM techniques to the transmission of continuous
data has been investigated. Equation (28) relates the output signal-to-noise
ratio for conventional binary PCM to the number of quantization levels
and the channel signal-to-noise ratio. These results are plotted in Figure 4
for various bandwidth-expansion factors.

Figure 6 is a similar plot in which the output signal-to-noise ratio
is plotted as a function of the channel signal-to-noise ratio for various
values of n when the binary PCM system is modified such that the errors
are uniformly distributed among the incorrect levels.

Then, from Equation (42) and using the bounds on the error proba-
bility as given by the Q curves in Figure 5, we obtain a bound on the output
signal-to-noise ratio as a function of channel signal-to-noise ratio for
difference values of 7 . This represents an upper bound (but not necessarily
the lowest upper bound) on the performance of the modified PCM system
with a uniform error distribution and these results are plotted in Figure 7.

For purposes of comparing different communication techniques, it
is desirable to exhibit the performance characteristics of these systems
by a curve representing the envelope of the knees of the curves in Figures
4, 6 and 7. Such curves for the two PCM systems are shown in Figure 8
as curves C and D and give, for a particular desired output signal-to-noise
ratio, the minimum channel signal-to-noise ratio required. Similarly,
curve B in Figure 8 is the envelope of the knees of the curves given in
Figure 7, based on Slepian's work.

In the system shown in Figure 2, the information signal is converted
into a discrete signal source of M levels. Since one sample is obtained
every suwo seconds, the maximum information rate of this source is given
by

R, = 2W,log, M Dits/sec. (57)
Note that # may be less than £, if the sample values are correlated or

if the M levels are not equally likely. Shannon has shown that it is
possible to transmit a message with an arbitrarily small error probability
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over a channel of bandwidth W perturbed by additive white gaussian noise
of average power N and with average message power S, provided

R< W log, (1+%). (58)
Letting
R, = ZWylog, M = W log, (1+5) (59)

we can find the minimum S/N required to reproduce the M level signal

with a probability of error as amall as desired. With reference to the system
of Figure 2, a zero error probability will result in an output (S/N)o.!,az/(f-,o“)
given by Equation (26)

(S/N), = M*-1 (60)

Solving for M and substituting in Equation (59) we obtain

%109,[#(—,‘?—,)0] - Wiy, [1+(%)£ 7,,’-] _ (61)

Solving for (S/N),
L[ T

Equation (62) is also plotted (Curve A) in Figure 8 and relates, for a

desired (§/N), (and a given bandwidth expansion factor), the minimum value
of (§/N); required. It should be emphasized that this minimum (§/N); is
achieveé only with a sufficiently long and complex encoding process which
entails a delay approaching infinity while the other curves represent systems
in which the delay is equal to 71%‘

Curve B represents a bound on the performance of a system with a
uniform error distribution and having the same number of degrees of freedom
as a binary PCM system (R/W = 0. 6) and, therefore, may be compared to
the modified PCM system (Curve D). We note, again, that Curve B is an
upper bound but not necessarily the lowest upper bound and, hence, does
not indicate that a system exists which can do as well. However, we see
that only a few db of (§/N); separate this upper bound from the modified PCM
system represented by Curve D. The output signal-to-noise ratio in these
PCM systems is found to be a function of the manner in which the errors
are distributed among the incorrect levels, as is demonstrated in Figures
4 and 6. It is observed that the difference in the error distribution has
its greatest effect at very low signal-to-noise ratios and has relatively
less effect on the position of the knées of the curves. As would be
expected, for the PCM systems considered, the signal-to-noise ratio
performance is degraded by imposing the condition of uniform error

125 RADC-TDR-63-147



e e e e

distribution as compared to the conventional binary PCM system where the
error distribution is more favorable.

The performance bounds developed by Slepain in Reference 2 allow
one to establish bounds on the performance of various systems consider-
ably more complex than the binary PCM systems considered here. One
might consider coding schemes in which a coding and a decoding delay, 7 ,
is accepted (where 7> ’7;7;-) but where the information rate to channel
bandwidth ratio remains unchanged. Thus, n = 2W7 has been increased
and, from Reference 2, we can establish bounds on the performance of
these systems. It should be noted that Reference 2 provides not only a
performance bound that cannot be exceeded, but also provides curves
which define a performance level that is, at least, obtainable. It should
also be noted that when a code group is decoded, not all of the data words
will necessarily be incorrect. The distribution of these data word errors
is not specified in Reference 2 and would have to be known from the char-
acteristics of the given coding system in order to compute the system output
signal-to-noise ratio. However, if the resulting error probability, Q .,
is sufficiently small, the only contribution to the output noise will be due to
quantization noise, and the limiting output signal-to-noise ratio may be
obtained from the expression given by Equation (62).

In Chapter IV, bounds on the maximum attainable ratio of signal
entropy power to mean square error were derived and plotted in Figure 1
of that chapter. This ratio also has been computed for the PCM systems
considered in this chapter, and some of these results are plotted in Figure
9 along with the results from the previous chapter. The £ /#SE for the
modified PCM (uniform error distribution) is plotted from Equation (55)
for m = 5and # =10, and the B,/#S€E for the PCM system based on the
probability of error bounds of Slepian are also plotted for the same values
of 7. These curves are very similar to the (S/N)y curves plotted in
Figures 6 and 7 and show the threshold of the modified PCM system to
fall a few db from the threshold of the curves developed from Slepian's
bounds. However, we see that the bounds on the B /#S& obtained from
Chapter IV fall several db to the left of the PCM curves, which reflects the
relatively poor utilization of the theoretical channel capacity by a binary
signaling system for this range of channel signal-to-noise ratios. It may
be further noted that the bounds obtained in Chapter IV apply to all
signaling schemes whereas Slepian's bounds apply only to equal energy
signaling methods and that binary PCM is in the latter class.
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VI

APPLICATION OF A PARTIAL ORDERING OF CHANNELS
TO THE COMPARISON OF DIGITAL DATA SYSTEMS

The problem of comparing digital systems with different size
transmission alphabets has recently been considered by Wolf. 1 The
method of comparing N-ary systems described by Wolf is as follows.
A K-ary stream of information digits is converted to an N-ary stream
of transmission digits and the received N-ary transmission digits
are then converted back to a stream of K-ary digits. The probab111
of error per K-ary character in the output stream is denoted by P o
In comparing two s hystema ha.v)ing transmission alphabets of size /\/,
and A, ,if ARY < & » the Nj-ary system is more
reliable than the N, -ary aystem for transmitting K-ary information.

A reversal of the inequality reverses the ordering of the reliabilities
of the systems.

Wolf illustrates the surprising result that the relative performance

of the systems for fixed N, and N, may depend upon the size K
of the information alphabet for which the error probab111ties are com-
puted and then compared. Thus, it is possible that P' o PW"
for a comparison on the basis of K, -ary 1nformat10n digits while for
K, -ary digits (K2 #= K,) Pki”’) > Pz 2) . Now, for
optimum coherent detection of N orthogonal signals of equal energy

E , chosen at the transmitter with equal probability, and corrupted
by additive white gaussian noise with zero mean and spectral density

N, w-/gh‘tr , the probability of error per N-ary character is?
/ T ZE2 | s
=1 “/ﬁ —”}‘70[‘}_2‘(74 “/"AT‘) ]¢ (x ) ¥ (1)
where
P(x) =37 / eyp(— 542 )a/y (2)

If K =2and M is an integral power of 2, then3

(»)

_ N (3)
o= 2(A/—7T’9V
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By reference to Figure 1, one sees that P,_(” < Pg(‘u) for low
signal-to-noise ratios, that is, when the energy-per-informa.tion-bit/
noise-power-density is less than approxg’.zn;xately -(5d}>. However, Wolf
also shows that in this same range 7, > %:2 » which
illustrates the dependence of this method of comparison upon the size
of the K-ary comparison alphabet. A depende(x;?e upon signal-to-noise
ratio is also evident from Figure 1l inthat £, > /g‘”’ above
approximately -5 db.

Thus far, only digital systems characterized by square, symmetric
transition probability matrices between input and output symbols have
been discussed. We will now describe a basis for comparing arbitrary
discrete communication channels, i.e., systems characterized by general
rectangular probability matrices, which is both intuitively satisfying
and contains within it the results described above. This comparison
method is based upon the partial ordering of communication channels
which was introduced by Shannon? and extended in RADC-TDR-62-134.
The class of all discrete memoryless channels is partially ordered with
respect to a relation of inclusion, written =2 , i.e., if K, , K,
and K; are any channels,

(1) K/ = K;
(4)
(i) ¥ K, 2 K, and Kk, =2 K, , then K, = K,

(iii) ¥ K, =Kk, and Ko 2 Ks » then K, =2 Kx

The inclusion relation itself can be defined in terms of the transition
probability matrices which pertain between channel input and output
symbols. Keeping in mind that the transition probability matrix of a
cascade of channels is the matrix product of the individual channel
transition probability matrices, given a channel represented by a transi-
tion probability matrix W  one can, by employing pre- and post-
channel pairs with matrices X, and 7y with probability G
obtain a channel represented by the matrix Q@  where

R=) g. AWk (5)
o

The channel characterized by W includes that characterized by @ ,
written W =2 @ , if Equation (5) is true for some set of R, ,

T and Jt Thus, in words, W includes Q@ if w can be
made to behave as Q.
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¥ w2 Q and @ =2 W » W and Q are saidto
be equivalent, written W = @ . This is a mathematical equivalence
relation and, as such, partitions the class of all transition probability
matrices into disjoint equivalence classes. Channels are identified
with equivalence classes of stochastic matrices, which accounts for

property (ii) of (4).

Given any two channels K, and A, , if K, 2 K, , it is
reasonable to say that K, is at least as reliable as K, since K,
can at least duplicate the performance of A, . However, this in itself
does not completely resolve the question of comparing two channels,
since it is possible that one has necither K, 2K, nor K, B K,
for a given pair of channels, i, e., neither channel includes the other.
It will be seen that this is exactly the case for the binary and 32-ary
channels considered earlier for an energy-per -information-bit/noise-
power-density less than about -5 db, whereas for values greater than
this the 32-ary channel includes the binary channel.

At this stage the channels being considered are quite general,
even to the extent of having different size input and output alphabets.
As a special case, consider the symmetric channels, which are defined
as follows., A channel is called symmetric if for some A and some
v the equivalence class of transition probability matrices constituting

the channel contains the matrix P = [_70‘- ,-] where
"pc'/ = £ > i=J
_ I=p Ry (6)
T k-1 7
GJ = 1,2, 0 =, Kot
Such a channel is completely specified by X and » and canbe
denoted ¢, , . The method described here for comparing arbitrary

channels is as follows.

Given arbitrary channels K, and K, let _p», be the maximum
- for which K, =2 ¢, , and -, the maximum » for which
Ky 2 Chyp . If p, > p, , then K, is more reliable than K, for
transmitting K-ary information. In terms of error probabilities this
conditionis 7-p, < /— p, . Thus, K, is more reliable than
K, for transmitting K-ary information if A, can be made to
behave as a K-ary symmetric channel with a smaller probability of
error than is the case for A, .
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. An immediate consequence of the above is that if A, includes
K, , then K, is atleast as reliable as £, for transmitting K-ary
information for all X . This follows from Property (iii) of (4).

Consider now the comparison of N-ary systems of the type des-
cribed earlier, with error probabilities given by Equation (1). These
are symmetric channels, and their comparison then centers about
inclusion relationships between symmetric channels. The following
result, which was first derived by Walbesser3, is concerned with
the structure of Shannon's partial ordering of symmetric channels.

Theorem: A necessary and sufficient condition that

Crp B Gy y M, R > is that # lie in the closed interval:
I. R2 N M
1-. N N . 1
VTR St EEA L wEy
>~ {7)
N [ N /
R v il - 2 =
1I. R €N
. I-pP N K=1 N N-R A
Nl REUS g RIP PRI I PRy
R-1 N N-R TP N 1
Ng RPY RW-IT S s RO EN )

(A proof of this theorem is given in.the Appendix.) This is a minor
extension of the results presented in RADfC-TDRi—63-l34 in that symmetric
channels C, , for which ¥ < are also considered. The
inclusion relations amongst the symmetric channels, as determined by

the above conditions, are illustrated graphically in Figure 2. In the
unshaded regions neither channel includes the other) In what follows,

we limit ourselves to the more realistic N-ary symmetric channels for
which p > 4

Let us now compare an N)-ary and N; -ary channel with respect
to their ability to transmit K-ary information., Denote the channels by

C”/n% and Cﬂ‘;.p‘ . For K2 WM™ ,Ng A , it is
readily determined from (7) that Cuppy is more reliable
than C/va,p,_ if
N2 < Ny Py (8)
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In terms of the error probabilities PM =71-4, , }3/2 = /-4, , (8) takes
the form

N, Nz
P, &1 — =2 4 &
2 Nt (9)
Note that this result is independent of K as long as K is greater than
or equal to both #, and A, . Inparticular, for A, =32 and

N, = 2, using the numerical results from Figure 1 together with
Equation (3), it is found that
’ /

faz < 1= g7 g P
Thus, the 32-ary channel is more reliable than the binary channel for
transmitting K-ary information for all A2 32. Figure 3 depicts
the situation for the case of X = 32. The curvesof A and Py,
give the performance of the systems to be compared. For a given energy-
per-information-bit/noise-power -density, the 32-ary channel includes
all 32-ary channels with error probability lying in the dashed region,
whereas the binary channel includes those 32-ary channels lying in the
shaded region. It is seen that the given 32-ary channel includes all
32-ary channels included by the given binary channel and more. This
is true for all abscissa values shown.

Suppose now that K< W, , A, . Itis readily determined
from (7) that Cy,, is more reliable than Gy ,, if
My A )
- 7 - - -
worl o)< N -7 (1= (10)

or, in terms of error probabilities,

N 43

(11)
M-1 %S W7 e
Again, this result is independent of K as long as A is less than or
equal to both A, and A, . Even more striking is the fact that in
the notation of Equation (3) this can be written

which coincides with Wolf's method of comparison for A =2, The
result here, however, requires only that K & N, ) V), and places
no other restrictions oh A, and N, .
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Figure 4 depicts the situationfor A, =32and A, =2 and
K = 2. The binary channels included by the given binary channel
have error probabilities lying in the shaded region, whereas the binary
channels included by the given 32-ary channel have error probabilities
lying in the dashed region. The change in relative performance at an
abscissa value of about -5:db is evident.

For the case of N, < K <A » it is found that Gy, ,,
is more reliable than Cﬁ’a,ﬁ if
A-N, Ay

7&.

N
-7 r—7 % S WZ——TP’Vz

which indicates a dependence upon K . This case has not been
investigated in any further detail.

In summary, a method for comparing digital communication
systems is presented 'which (1) encompasses channels represented by
arbitrary transition probability matrices between input and output
symbols, (2) relates directly to Shannon's partial ordering of channels
in the sense that, if one channel includes a second, it is at least as
reliable as the second independently of the size of the comparison
alphabet, (3) duplicates Wolf's results for the special cases treated
by the methods in his note.

o~

(13)
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APPENDIX:
PROO¥§ OF THEOREM

A proof of the result (7) is given here. Define a pure stochastic
matrix as a stochastic matrix whose elements consist entirely of
zeros and ones. Then, given any 7 by » stochastic matrix ~ ,
it is possible to express P as a convex linear combination of at

most w (n-1) + / pure stochastic matrices A y ioe.,
A _ L

P=Y w Py@;30, Yai=1,2& mm=1)+1 (A-1)
=7 =/

To prove this, let P = [-P,‘/] be any 7 by 7 stochastic
matrix. Let J; denote the column index of the minimum non-zero
element in the %4"%%/ row; if this non-zero minimurh occurs in more
than one column, J; may be selected as the index of any one such
column. The non-zero row minimums are then the »p‘;/‘, . Let

(r)
and let piL be the pure stocha.stlc matrix defined by ~,0,J =17 .
Consider the matrix, P—-w, Pl 7) which differs from P only in the
( Sy ) elements, in which case the elements are

/P('j‘. - w/ >0

Furthermore, at least one of the -}0¢J — &), is equal to zero. Thus,
the matrix, P— &, pY , has at least one more zero element than

P . In addition, the row sums of ~P- w, P all equall 7/~ @, .
Repeat the above procedure on the matrix, P- &), P , to obtain
a second pure stochastm matrix, P(a , and consider the matrix,

P- @, PUL @, Pl . This matrix contains non-negative
elements, has at least one more zero element than P-¢), pt al , and
has row sums all equal to. - )y — @, . This procedure is repeated
as long as the resulting matrix contains a row with more than one non-
zero element. Since there are only finitely many elements in the
original matrix, # , and since each repetition of the above procedure
produces a matrix with at least one more zero element than the pre-
ceding one, the process must terminate., Assume this occurs after
r-1 repetitions. Then,
P—w,P"’ ©, P(z)__ e — o, ., P(A N Q,
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where each row of the matrix, @ , contains only one non-zero element
equalto 7~y —Wy - — ), . Thus, @ has the form

Q._-_-(’-w,_uz—...— w‘.’)P‘*)

p*)

where is a pure stochastic matrix. Setting /—w, ~W, =~ —d_,=lkg,

P= U]P(”* w, P“)* cee P(ﬂv,

where the P( ) are pure stochastic matrices and @; >0, @« = /

Thus, P is expressed as a convex linear combination of ‘the above

pure stochastic matrices. The maximum possible value of £ is attained
if each repetition in the above process produces a matrix with only one
additional zero element and if there are initially no zero element in P
Therefore, A & m(n-;) + /

Consider now any transformation of the type given by (5).

ES«"'«P@ =Q
X,

If each R, and T is replaced by its representation as a convex linear
combination of pure stochastic matrices, the transformation is expressed
in a form involving pre- and post-multiplication of P by pure stochastic
matrices only. Thus, one need only consider transformations with the

R and 7, pure stochastic matrices.

The stochastic matrices, P = [-p,/] and =[7‘-/-] .
defined by

PiY= P i=J o
) J = 1,2, N
= I=2 ’
N—1 g
?"J =, i=J
=t /= b3, R
= %7 ‘7
are contained in the symmetric channels, Cy,p and Cg ¢ , respectively.
We are interested in conditions under which (g r = Cu¢ or,

equivalently, PR Q .
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To determine necessary conditions, assume that 7= Q . Then
there exists a transformation such that

quRmPR =Q

The traces of the matrices are related as follows,

D G« (RuPTi )= 22 Q = Rt (A-2)
ol
and, thus
L im {a (&J“E)} $¢< "K,— ey {%(/f« P 7y )} (A-3)
,( Rv()7°( RO(; 7;(

The use of min and max is justified by the fact that only pure stochastic

matrices, R, and 7. , need be considered and, since these are

finite in number, the minimum and maximum must occur for some specific
R » Tx pairs in the set.

Suppose these pairs are £ , 7 and K7, 7'+ y ioe,
min {n(R,(PT,()} = a(RPT =0 @ (A-4)
Roe Tox
max {a(ﬁ“}?& )} = a(xPTT) = 5 @ (A-5)
R, T

where
Q =R PrT ., @ =pgrPT? (A-4)

Equation (A-3) is a necessary condition that C,,J,, 2 Cpe . To
show that it is also sufficient, assume that the condition is satisfied,
i.e.,

I - <._L.
R 2 Q@ Stsk

Let Ao+ represent the channel containing Q" , and consider the
transformation,

% Q" (A-7)

R!
Z _Rﬁ &‘Q+Ro( = U7, (A-8)
o=/
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where the Ry range over all permutation matrices of order R . The
elements of (7 are

‘ +
/((:-':R/ QQ y A =
Y , i, J=1,2,--- R (A-9)
17— . Q . .
s 1EFE

*
Now P 2 @' by (A-6)and @”2 " by (A-8). Then P2 ¢ by
property (iii) of (4).

In an entirely similar manner, one finds that 7 =2 U~ where

- V4 - . .
Mij = 7 2 q = v
- - . (A-10)
_ /R & Q Y
R-7
& o = /,2)"’)/?
From (A-T7),
Q= wo (-0 , Osw </ |, (A-11)
and, by a result of Shannon4, P =@ , which demonstrates that

Condition (A-3) is sufficient for Cp , 2 Cg,»

It remains to exp11c1t1y evaluate the minimum and maximum con-
tained in (A-3)., Let Q )= Ao # 7 and consider a typical element
on the main diagonal of @ =) ,

N
(4 ol £
?ﬁ/: =VIZ 42,:- P u éig —ﬁ'ﬁvﬂ (:)é ;

= M=/
where ¥y is the index of the column of Ao 1n whlch the “"!" row
unity appears. The effect of R in determuung 3“! is to select out
the 7/' rowof P . Now, let Jb t}/e the set of row indices of T
correspondmg to the rows in whxch the 'k''th column unities of T
appear. Then 7, , Iz yeen g JR is a partitioning of the row indices,
1, 2, ... , M, into R mutually disjoint sets, some of which may be
empty. Then

ZA(:’ Z Py u

and '«E‘T"
(o ) &
SO AR A N
A= A= 4(6.7‘_
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In forming 2 Q“ » one is free to select a single elexinent from each
column of P , the sum< of these elements being 4 6?(" . In addition,
these elements can be selected from not more than X rows since the

range of the dummy index, K , is from l1to R .

For R2 N , each row of P can be utilized and #. Q“) is
maximized by selecting the maximal element from each column. If
w0 > I/// then \p >(/—40}/(/V-I), and the maximal column elements lie
on the main diagonal of P . On the other hand, ifp < f//V » then
w < (1-YN -1\ and each column of #Z contains N-1 maximal ele-
ments, each equal to(7- -;b)/(//-/) . Thus, for R2 N

m(&d‘”): Np IF p > 1/V
= N % IF g < 1N

Ifp= -—/6— = 7/\/—:4}— , then all elements of P are equal and
) /-
ma (m, Qf(" ) = /V/p = N —7Vt€—- = 7/

To find min(z Q(") the argument proceeds exactly as above except
that, in this case, minimal column elements of P are considered.
One obtains

. (ot} 7_. /- -L
mm[ma j= N N—_—f— IFp2 5
- /
= NP IF L £ W
Thus, for R 2 N , Equation (A-3) can be written
=P N N L
N-1 R s ¢ < P R I~ -IP.E g, p)
N

N =P N /
P RIS R IF P £

which is in agreement with the first part of (7).

Consider now the case of R <A/ . The above argument must
be modified.in thatonly R rows of P may be utilized in the maximiza-
tion and minimization of & @ Thus, one must select a repre-
sentative from each column of P with the rfstriction that at most R
rows may be utilized. In maximizing & Q™ it P> ‘AL/ » each of the

R rows can contribute one .'f" but the elements taken from the remaining

N-RK columns must then equal — . On the other hafxd,
ifp< ﬁ », maximization is accomplished by selecting a ' —’/V-—'_*_ﬁ-,— " from
each column, which is possible since A > 7 . Thus,
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max {p,_ Q“”]: Rp + (/V-R) ﬁ‘

/

R-/ N=-R_ i
T F P>y

==Vt N

and

max {?& Qw } = N% IF < #—

For 4 = # » these maxima are identical. Similgr considerations
apply in finding min(2 QY . i -» > ;6 ,» the ”—_ 1 elements are
minimal column elements and ¥/ of these can be selected. On the
other hand, if % < , the "P's are minimal column elements and
only R of these can be selected, the remaining N—RK  column repre-
sentatives necessarily equaling ( /—70)/(/\/— 7) . Thus,

’ (=) = /= = —,
W{thQ } Nﬁ_’ ) /F,p__/v
Y. thd 4 N =-R <1
_N_//\/,p%/v_/ ,/FP_,V
Thus, fpr R €N , Equation (A-3) can be written
L=p N < Kot ¥ N=-R A
Nt REESNITRP T RI-1) T PR
R-1 N N-R_ . I-p N /
AN < AN £
NI RP*rv-1) S¢S W& FPEY
which is in agreement with the second part of (7).
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OPTIMIZATION OF DIGITAL COMMUNICATION SYSTEMS
OPERATING OVER A DISPERSIVE CHANNEL

OPTIMIZATION IN THE FREQUENCY DOMAIN

SUMMARY

This analysis is concerned with optimization in the sense of minimizing
probability of error of a digital communication system, where we have con-
trol over both the transmitter waveforms and the receiving system but not
over the channel transfer function or the noise properties. The transmitted
signals are assumed to occur independently and with equal probabilities.

The energy and duration of the transmitted signals are specified. The noises
added at the input and output of the dispersive channel are assumed gaussian,
but not necessarily white; hence, a linear receiver is used, Matrix Equations
(10) and (11) give the relationshipd which must exist in an optimum system
among the signal, receiver, channel and noise functions., These equations
can be readily solved for the optimum receiver given the transmitted wave -
forms and vice versa. The main problem is, however, to optimize both the
waveform and the receiver simultaneously, For a particular situation, i.e.,
specified channel transfer function and noise autocorrelation function, the
form of the solution is obtained. That is, series expressions for the optimum
transmitted waveforms and the impulse responses of the receiving filters are
developed. The coefficients of the series have, however, been specified only
for the binary case. Interesting orthogonality properties which the component
functions possess are developed. ’

The chapter concludes with an alternate representation of the probability
of error based on geometric concepts.

INTRODUCTION

3
Figure 1 illustrates the system to be analyzed.

£, w;

f’ .

: ‘ .| v [ o | — (xg)

£

n f ", L’/ 3
FIGURE 1

* This system was previously considered in Reference 1 where a time domain
analysis was employed instead of the frequency domain analysis which is
used here,
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The input ngnals are time limited, i.e., the 7/ vanish outside an interval
[07] and it is assamed as well that the filter functions u; are zero for
£ > 7 . Thenoises », , n, are additive, gaussian with zero mean,

The filters are sampled at ¢ -7 and the decision made that # was
sent if the output of z; exceeds the output of each of the other filters. In
Reference 1, an expression was obtained for the probability of correct de-
cision Ao as a functional of the #; , w% . The problem was posed of
determining the set of functions, signals and filters which maximize Fe¢ when

W% and the noise correlations are given and the energies of the signals
limited. A set of necessary conditions onthe # , =~ was obtained by means
of the variational calculus. These conditions had the superficial appearance of
a system of integral equations but the kernels were, themselves, functionals
of the unknown, An explicit solution was then obtained, mcludmg the calcu-
lation of A< , for a particular w% and noise correlation in the case N = 2.
It is found, however, that the techniques which succeeded for A = 2 were
intractable for larger N .

The present investigation deals with the same set of necessary conditions
on the time functions wz , 7/ . By replacing these conditions by equivalent
ones on the Fourier transforms and operating in the transform domain, we
have succeeded in finding the form of the w¢ , /4  for general A/ (where
the same w3 and correlation as previously used have been retained). This
is the main result and is given in Sections 2 and 3. The A , wy are found
to be linear combinations of functions of the same class that solved the case

N =2, But, as yet, we have not been able to determine the coefficients
which complete the solution for NV > 2,

In Sectxon 4 some orthogonality relations are given which the functions
arising in Section 3 satisfy, along with some invariance properties of the
basic equations in the time domain. These results are important for the
construction of explicit solutions from the general form.

An alternate representation is obtained in Sectior 5 of the conditional
probabilities of correct decision which, in some respects, is more convenient
than that given in Reference 1.
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TRANSFORM DOMAIN, PRELIMINARY THEORY

We consider functions of a complex variable of the form
e-lT@r8) _y

w+8

6lw) = ¢ (1)

where 7 isrealand ¢ , /8 are real or complex,

Expanding the exponential in (1), we observe that the singularity at
@ = -8 is removable, Defining G(w) by continuity at this point, we
have that G (w) is entire, It is shown, as follows, that the IFT (inverse

Fourier transform) of G(w)
Ao
4 el @8 _4
(t) = —— | ¢/®¢| — dw (2)
g lr wr g
-00
vanishes outside the interval [0, 7'] » where real ¢ is understood and when

7 is negative [0, 7] is underatood to mean [T, O] . The assertion is
evidentif 7=0 , For 7>0 ,if ¢<0 or ¢)>7 , we can write

9(t)—zn[e [ i (3)

where ( is the contour consisting of the real line completed by a large semi-
circle in the LHP (lower half plane) in the first case, or by a large semicircle
in the UHP (upper half plane) in the second. Hence, 9( t) vanishes in either
case, and similarly if 7< 0 ,

For any function of the form
~“T®

a,(a)) = Py s 7" real (4)
we define
)] - ec78
[« (@ ™ e (5)

i,e., the @ in the exponent is replaced by the zero of the denominator.
And for any linear combination of functions, ¢; (@) of the form (4), we define

[;C"- a;(w)] - ; ¢; [u.; (@)]R (6)
R
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We observe that the function
@ iTW e-lTw
- | ™
wrs w8
has the form (1) and that any lmear combination of such functions, 7 {ixed,
has an IFT which vanishes outside [0,7)

If Rlw) = /V(w)/b (w) is a rational function for which degree of # < degree
and D has only simple zeros, we see from the partial fraction repre-
sentation that

e ®7 R(w) - [c"@rk(w)]k (8)
has an IFT which vanishes outside [O,TJ .

In evaluating [ ’“"rﬁ (“’)]& , it is not necessary to operate in each
case with the explicit partial fraction representation, for we have that if
A ¢ =1, 2, ...M are the zeros of D then
: " eiTH :
[eiom o] - § 2% A o
R P34 (‘l)-ﬂ(:) D(’ (GD
where D (w)
D, -—

GENERAL SOLUTION OF MATRIC EQUATIONS IN TRANSFORM DOMAIN

Equations (30) and (31) of Reference 1 gave the necessary conditions

that the probability of correct decision, Z , be a maximum. These may
be written in matric form,
VH(T-t)-nf(7) * Q (10)
vg (T-7)-pr()* Q velo7] (11)
where ¥ , , A are constant square matricesand 4 , f , g

are /¥ dimensional vector valued functions of time (column matrzces) which
are distinguished by the tilde written beneath, The transpose of % is indi-
cated by ¥ . The interval on which (10) and (11) are required to hold follows
from the requirement (which we impose as before) that the # s1gnal| ’

and the A/ weighting functions %, vanish outside the interval [0, J . The
vectors /2 , g » T are defmed by

w, *F
g-WO*,f' w{:f: (12)

w, *f,
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by = wo * w (13)
L =P *uw (14)

where w3 and _© are the channel weighting function and noise correlation
function, as in Reference 1. The square matrices have the properties

A
A= 'M.,.o (15)
0 Ay
where the A, are Lagrangian multipliers,
;Vtz=‘0, "t=7, 2,0.;” (16)
Z? -0, t’,,z,ooom (17)
7 AL

7 -»?’ . (18)

Since (16) and (17) imply that ¥ , R are singular, it is convenient to make
the following transformations. Define 70 v ¥, by

A 7o A (19)
V-V o .
(These transformations will permit us to modify a certain matrix product
which will occur subsequenrtly so that it will not be singular,)
where _ ; - 1
7,0,0,0 00 </ 10,0, 7
0'7)0,""", 0)’,0'0 7
(70 = 0’ 0)7, 0, e -’ 9 o.' - 0’0, 7’0 7 ¢ (zo)
0,0,0++ 1,1 o
| 0,00+ 7] | 0,0, 7 |

Then 77, , Y, have the form
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[ 7"’ 772’ te )?v,m-}-’
Yer? Hogr * * 'Zn.,u-r'
%o =

Q".Q Q

7w-1,1 ! .}?Il-tﬂ'l'

_0’0’........0

- b

ﬂh ﬁu ¢ ’)nu-n 0
’Jzn ’fw ¢ 7{-,»-1. o

»
.
.
>

e s e &

Yors Yars** Yyu-10 |

B

(21)

Upon substituting for Y, 7 in (10) and (11) and multiplying the resulting

(11) from left by J,-7 , we get
Vo h'(T-7) - Nfle) = 0

‘f)'og (r-7) - yzor’/zv) =0

where
'l‘),'=t7;/7=~7;wa*5/’=w5 *J;y=w'o*g*’
'=dored, pru=p *Jpw =_po* w
’
w'=Jow
e.g.. ”-’4
Wy — Wy
| wi - ws
Ll P
ws

Writing explicitly in terms of the unknowns, we have

Yo (ug *Eﬁ”)f—z -AfTeQ

Volws % f) = Qo(prw)reg

(22)

(23)

(24)

(25)

(26)

(We shall at times for convenience indicate arguments of certain functions by

subscripts. )
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Our problem is to find real functions ‘", £ , when wyi , o are given,
which satisfy (25), (26) in the interval [0, Tj and which vanish outside this
interval, We define the FT (Fourier transform) of a real function «(¢) by

U(w)=/c“”‘ wulddt
and note that if w(t-)‘-' u(7-¢) , then W (w) = e-t&T U(w)

Let the left sides of (25), (26) be denoted by

u(T) = v (w; *Z‘f’)r-z' -AfT (27)
v =P (wg 2 f), .~y (pru)T (28)

Using the convolution theorem together with the property just noted gives

Ulw) = v, (Wo W) e @T-»F (29)
Vi =9, (WF) e o™y, 5 W’ (30)

where the bar indicates complex conjugate and Wo , W’ , F , @ are the
FT’s of wy, w’', I , P . Wemaynow rephrase our problem as
that of finding £ , %’ so that the IFT's, £ , z~’ are real and vanish
outside [0,7] 'while the IFT's & , ¥ of (27), (28) vanish inside [0,7] .

Let us take
E=n'w e @ - [Ny, et®7 ], (31)

where ﬂ' = W, ZV' and the operator [°]A applied to the column matrix
means that the operator is to be zpplied to each element. It is understood
that we shall subsequently take 4’ in a form consistent with Section 2. Then
represents (if the £/ of) a function f which vanishes outside [O,Tj .
This does not yet make f - real, but we note that since wj is real, F will
be real if _%"L is real, We use here the criterion that the function represented
is real if ~ W (w)= W(-@) . Applied to (31) together with the fact that [-],
commutes with conjugation and, also, with sign change of & , we have

f— =Xy, e {wT ,/;/’ - a7 Y [ec'wT!:/’]&. (32)
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Then
Vo €T W F o= YNy Wy (- e 0T [etwTh], ). (33)
and so (30) can be written
Vi) = (%X, Wy W -y, §) W'- B Ny e @7 W, [€“TWo "], (34

Now the elements of the last row and column of the matrix
V=9 A7, (35)
are all zeros, We define V, as the (¥-7) by (#-7) matrix obtained from

¥ by deleting the last row and column, and we denote by 7% the (W-7) by
(#-7) matrix obtained from )70 in the same way., Putting

Y2 ¥ N | (36)

(the existence of the inverse may be assumed), we have

V=0, (W By r-y G0~ e=@T i, (ewT Wy )e]. (37)

We now take W' in the form
WI_. Wﬂ, - e‘(’(l)r[et.'ﬁﬂrk!/‘]k, T>0 (38)

~ ~

where W. will subsequently be taken in the appropriate rational function form.
Writing (38) as

W' [t e (eiom ] et

we see by Section 2 that the square bracket represents a function which vanishes
outside [-=7,0) and so / iteelf represents a function which vanishes outside
[0, 7) . Using (38), becomes

V- %{(W, Wol-¥8) W - (W W7 -7 §) e ®T (/T Y ) (39)

o -hhdd M7a [e éw"'m/‘ Wa— - W, (e‘:mr.,wﬁ)alk} ¢
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We have to find 4, so that 4’ represents a real functionand [ 1V
represent functions which vanish in [ 0, T] . To illustrate the technique
that may be applied to this end, we consider the case

Q
- o 40

7 3
f (@) = )/2 + _(_:_% (white noise at input & output of ¢, ) (41)
at+

The first term of (39) is (except for the matrix factor % which will be seen
to be messentlal to the following arguments concerning the vanishing of &« ,2~

in [0,7]
where '
g 2
i - nz-‘f‘—-/.n,»*n,,ft (42)
Let k!/,, be such that
yd — -
I- . W, = bW, (43)
[ W, 4 }W M = £ %
where é is a constant vector,
Then
e 1! 7 -7
W [ - ]b = — (I- . 44
~"MIW,m W,(] r8)74 (44)

Since Wo represents a real function which vanishes for negative ¢ , W,
represents a real function which vanishes for positive £ and therefore in
particular vanishes in [0, 7] . Because of (43), each component of the
first term in the curley bracket of (39) vanishes in [0,7] . To complete
the requirement that 2~ vanishin [0, 7] , we shall choose the second and
third terms of (39) so that their sum has no pole in the LHP, For the example,
there is a pole in the LHP at &/ =-¢a and, in a momeént, we shall impose the
condition that the residues of these terms cancel. At the same time, we shall
satisfy the requirement that &« vanishesin [0,7] .

Let 5; be the roots of the polynomial
|v&.-1| -0 (45)
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i.e., the &; are the reciprocals of the eigenvalues of ¥ . We assume
that the &, are distinct so that we may use the representation for a function
of a matrix

-l

where the ¢; are the resolutions of the identity (projection operators) which
have the properties

€ =€;  C=h2, W=7

et
Zé; =7 .

7
(For an arbitrary vector X , the matrix operation &;X projects X onto
the subspace spanned by the eigenvectors associated with the eigenvalue g;' )

Thus,. by (46), we may write

A-7 7 N-1 P
7875 g ei = Sy

I-rE =$(7‘g—£)65 .
Hence, from (44)

we =L 5 Eep (47)
~ We 7 &% T . '

From (42)
w*
g_gg' = ﬂz -—'_:, * /7’ + n& -54'

and since the g,' are constant, we may introduce new constants ,5( by

XL TR 4 (48)
7, - a*
Thus,
ari)y —Em it
Wo =-alariw &b . (49)
~a Z," n (w*-87) ¢~
With the use of Section 2 and the linearity of the operator [-]R » we have
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w1 LR .
& 7 elhi” 4 e AT
s A — 22 e
[ Mg/]R g: P &b [ % 7, * oI E im (50)

. o & ar i el a-:B8; e<4T
eCTUWl = ~ 2t e, < " ¢
| ”‘L e e 2 [ @ -4, RB:  wrl; 24 51

, J 7 eisT 7 e~B8:.7
W, ei@Ty ] - Slarbiey , 52
[ °[ "‘]k R - “ n, T lw-8 24 wr8;, -RA5 (52)
" 7 [a,-* B; e"4’7'4 a-t8; e AT
a+tiw|ai-6; 28; a;,*8; -RA;

Hence, the third term in the curley bracket of (39) is
.1 . .5 - .
_e’éwr W / at-2s :j € b (,) e‘ﬁ 7 “’4/ T (53)
a+iw n, J= za, 24 /|-

We observe that the term in the square bracket of this expression is just
(w) from which it follows that & vanishes for all positive ¢ and,
therefore, in particular for ¢¢ [_'0, 7] . For the second term of (39), we

have

0T W, W, 5"‘5 & wri? eYT a-if e GT
e VVoWo; ) ﬁ; & b P 2,4_,'* wrg <24 (54)

Since €7 ¢ =0 , [+ 4 , the last expression becomes
: = & (w*-87 . elBiT — (A e-t&T
e~ “T W, W, X (w4 |2l e, « 8 e C5)
a ~ w-jj- 2/6/ @ 8, —"zﬁj
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For the condition on the residues, we get

‘;;4(-0-‘—,61‘) ers| 275 e"417'* a -8 e-i4T
; «  2acg Zs ~aiv8 -28;

(56)

"‘,Z b b (,)[ e BT -z@-r} -0

24' ~

Since the €; are disjoint, this implies that the coefficient of each €
must be zero. Hence,

. ’4 z .
t(a2+B}) | 2228 o7 2-28 g7 _ 2'% L (ea7- e~47)
@-i8; a * (A,

7 Nt * hy la? nd/‘) LT _ o=l T
_ 2‘ ”& (e ', -e 4 )o

Simplifying

, n,a* a + (B , 2*
ez,g-r 4 * 2a*7+ 8%+ (22 v R: v - e L rars 8% 4

(a* » 47) ““‘s’f]

a +til
2, a’* . . n,a‘
11_ 2 . v
ST h, ta*+ 8’y (a- 5,6’) T tRa ‘2‘“"@,e-ztr¢a""5://a/
L + atr.6% ¢ (mw;-)‘ Ldef?‘Zia,d:,‘ 7+ 2
”& e (Y
Hence, we have arrived at the condition
' (57)
4/~
_———s-mﬂﬂjr’ J'-,,2’°"’N_7c
7# L
Rn,
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which, in view of (48), is a condition imposed on the eigenvalues of 7 .
Since we assumed distinct eigenvalues for 7 , we have to choose distinct
roots of (57) (the case for degenerate eigenvalues needs further investigation).

Collecting the result for //’ , we repeat here equations (38), (49), (51)

‘,1/’- W - e-t@r [e (w7 kya.]k , (58)
w, = - ———-— 5
~a 4(&*&@)72 ﬂz((ﬂ""ﬁz) ( 9)
. ﬁ e‘ﬁ‘ a — ‘:ﬂ- e-(:ﬁ(7
@y, | = - art ‘ . 60
[eco7s ] Z’ “ [ w-8; 28 & @b -28; (60)

If we deal with real solutions of. (57), it is clear from the last equations that
whether 7+’ can be made real depends only on whether we can find the approp-
riate constant vector 4 . This completes the construction in the transform
domain,

Liet us carry the results back to the time domain and, then, we shall summarize
what has been found, We have in connection with [/,

l_(a,-f('&))_ 7 ariw (T _
]/‘7’{ Q)"‘/d[“}- ana_/ @57 e dw =1, (61)

We have, by Cauchy's theorem and the usual understanding of the meaning of
an improper integral of the form I (that-is, we are taking &; real)

a.+c(t) el wt - =
/// a)"-,d” *“'dw ﬁ‘;res. o (62)

where the contains shown in Figure 2 are for ¢ > O

(7 *
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FIGURE 2

Thus, since the integral over (’, vanishes

. 7 - L8, - a + 4,6‘ .

- = e— e L 4,3,.!‘ — ‘jg‘-t R

L[ /*[ - l:-z ; e + 2 2 (4 i}
“tr 2

and so

2. o2
[‘@7% Stﬂ(/)’tfta —g) to>0 (63)

For t<O , (s is taken in the LHP which results in

7/ 2 K N
I T - i..-f_/d‘- 5(/7((9"2‘ -+ {dﬂ-7ﬁ)
RB; a
so that
b Yat -z
KVa'a.Z g‘é‘ a,,‘,g, ﬂ(/ﬁ’fffaﬂ’—g‘—). (64)
Similarly, we find
[- ]
7 0T ] L@t ¢ §7 5 a7 B i8:0647) |
' ¢ L P 5 : 65
er/[e mke 4w za;n‘écé Y + (65)
a'_é‘_éf. e—éﬁz(trr)],
Hence, the IFT of the second term of {58) is A
—sgn(t‘rz ‘é ya* +.6; sin (,5;1.‘ + tan"%) . (66)

6
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Combining, we have

-1 ’
g, . —é 2’ 2 ) ( -7 /_G’f:) R <
%ﬂ/ 4,’2 €; 22-74 + B85 s5im (Bt + tan = s OSEST (67)
0, elsewhere
Evaluating !}’(t) = wy * 2’ gives
V-7 14
fle) -3 e H4L i pe, (68)
e 7 Ay,
From Equation (25)
-7 g' )\'—’7) ,
£ =X ST € fat sin g (-7) - (69)
1 ¢y

In summary, what we have obtained in the present section is that the solution
vectors w’, [ are respectively linear combinations, Equations (67), (69),
formed from the sets of functions

Sén (ﬁ‘ t+ tan” %), sén A (¢- 7) (70)

where the &; are solutions of (57). The result is valid for general V . The
difficulty in passing from the general form of the solution to the explicit solutio:
i, e., choosing the appropriate 4 and 4’ , is that (48) has to be satisfied.
The difficulty is greatly diminished in the case A& = 2. For, then, (67)
becomes simply

w = w; —~wy ~ A sin (Jzt + tan”’ %} (67"

where A is a constant. And, then, (68) and (69) become

’ (43
) A2, 8 68"
h'(¢) VT s Bt (

= _ia_,__ 7. ; At - 69!
f(t) m N })o Sbnﬁt (t T) - (

The last three equations are identical with (58), (62), (59) of Reference 1,
while our present equation (48) is just the previous condition (54). Thus, in
the case #/ =2, we may show just as we did before that (48) is satisfied.
But for /A > 2, we have not as yet obtained an explicit solution,
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In the next scction, we present some orthogonality properties of the
functions (70) together with some general properties of the basic vector

equations (10), (11). Such properties are important for the completion of
the solution for WN>Z .

PROPERTIES RELATED TO THE SOLUTION OF THE MATRIC EQUATIONS

(a) Orthogonality Properties

We give, below, two important orthogonality properties of the sets of
functions

helt) = sin B; t (71)

w;(t) = sin (,e, ¢+ tan~" 2 ), (72)

where the /; are solutions of the equation

. RN A
. e ——— I, 13
tan B 7 n,+2n, a (73)

We may, without essential restriction, take the &; positive and label them
8, » 8 +Bs + ... inincreasing order of magnitude.

The resul;s are

he @) hj(t) dt =0, ¢ #/ (74)
/ wy (Ww; () p(u-2) dudvr =0, (#j (75)

where
L) =n &+ n,'% el (76)

Equation (76) is just the correlation function with which we have been dealing
all along. It is conjectured, however, that the orthogonality properties corres-
ponding to (74) and (75) will hold in more general circumstances. The proof

of (74) is immediate on substituting (71) and using (73). The proof of (75) is
also a straightforward calculation, only lengthy,
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{(b) Invariance Properties of the Matric, Vector Formulation

It may be verified from the definitions of V , n in Reference 1
report that

d P
v-(a c s 7.-2(51_/_%_ . (77)
iy My
P,
By a notation of the form :mc) , we shall always mean the matrix whose

f'/' element is the indicated quantity bearing the label t:/ .

The matric equations (10), (11) of Section 3 may, :‘.herefore, be written

aPc)
(67: (w *w~) , -~ =0 (78)
te [0,7)
IR 9P 79

We consider, now, that a complete energy matrix has been specified. That is,
that we are required to satisfy

r

/f ) f (t)at =E (80)
o

where the square matrix £ is given. This is a deviation from the situation

considered previously where £ was a diagonal matrix, but the basic equations

(10), (11), Section 3, remain unchanged, except that A is no longer diagonal.

Substituting (78) in (80) gives

0 -
NELAPS (o)
mij
where 57 is the transposed mean matrix, Substituting (81) in (78), we have
IPe R -
- [Lle 82
dm;j)(% *w) (am‘.j)”’g 2 =0 . (82)

Consider the transformation

Af =f , £ =Af (83)
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where A is an orthogonal matrix. Under this substitution, the matrices

m, M, (;::/) ' _5%%) correspond to the new matrices 77 , M,
aPc) s (aPc We find the relation between them as follows:
omyl ' gy

iﬁ=w-*f*w-.--w«x,4f*w-,4-/1 *f‘*w-/‘f AmA. (84)
And similarly, ‘

M= AMA . (85)
For (-i-—'c-é——) , we have

am;j
2Fe 2~ o muy (86)
0 Myj f‘;’ dmy My

From (84)

o

_-”Z_AL - /4{.", Ajl

dmg/
and substitution in (86) gives

P

(d_°)= ) 7. (85)

0m€, amg
Similarly,

I~
A 86
aﬁcj) (aAJ (86)

Collecting results, we suhstitute the following in (79), (82)
£-Af, weldg, meAMA, M<FZMA

3y ) R (5m5) A (53) = A ()

This gives
2 Pe P\ == -/
(a_g)(w, ), - am;)mf £ «Q

’ (87)

2 P —
am‘c)(‘w‘**’) +2; q)/o*%‘g

¥ We have uscd the definitions of » , M given by Equations (2), (6) of
Reference 1.
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where I_E i'AE/T .

Thus, if f , %~ solve the system when £ is given, then jf-i"Af ,
% = A w- solve the system when £ = AFA is given,

We consider next the substitution

w’—“»fg'- r=f A F O, (88)
wTxe
We have at once
m o= m
M = £*M (89)

(ch) - 3 d&}
amyj ) ém;j

31‘%) - L aPc)
(675) = # 5

Substituting in (79) and (82), the equations are unaltered and we conclude that
if £ , w solve the system, so does F , 7 g . Moreover, we deduce
easily from the representation of /; given in Equation (91) of the following
section that

Pe (myM) = Pe (om, #°M)
where it is recalled that
Pe=20pi P,

Hence, 7¢~ is arbitrary to a multiplicative constant and different constants
give the same Fc .

AN ALTERNATE REPRESENTATION OF CONDITIONAL
PROBABILITIES OF CORRECT DECISION

A contour integral representation of the conditional probabilities of
correct decision, A , was given in Equation (14) of Reference 1. It was
obtained by use of the characteristic function of the normal distribution and
was valid for an arbitrary number A of signals and weighting functions.

We shall obtain directly here an alternate representation which, in some re-
spects, is more convenient than the previous one. We shall discuss it relative
to the case A/ = 3, but it will be evident that the essential arguments are valid
for any &V .
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For A = 3, the conditional probabilities of correct decision are

B"P(%;)‘ng 1))13'{‘1 sent)
B,’P(fz> 17; 4’; )ﬂ, lﬂ sent') (90)
RePlry>x,, 2s>2 | A sent) ,

For the first of these, we have

IM,-K y -1
£ -m/e % =-m)IM (z-my) A, dx, d, (91)
where my is tl;ge moment vector (column matrix) when f, is sent
M is the moment matrix
and S is the subset of £°' which is bounded by the planes

%1—11”0’ ¢y—z3'0

and contains the point m, ., (For convenience, we have dispensed with the
tilde used elsewhere to distinguish column matrices or vectors.) By a pre-
liminary translation, we get

ImI% ) fems
Py = 2% et dx,.dx,dx‘,
g/

where 5’ now contains the origins and is bounded by the planes

Ky=%g o+ My =Mpy = O

(92)

Yy -%s #£ My =My =0
Since M is positive definite, we may make the substitution (Reference 2)

x=mMExs (93)
and obtain

7 S Th
erm e ; ¢ da,dx,dxs (94)
50

where &' is the image of &’ under the transformation /% . It is conven-
ient to write the planes (92) in the more general notation
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-~ ' (95)
-Z‘/J 35 + i)),’ - m’s = 0

where, in the present case,

a,.-(-z’),, b -(9’) (96)

Under the linear substitution (4) the planes (6) transform into the planes

AL+t My =My =0

LY # My -ty = O (97)
where o~ -

a = aM", b "bMK.
Since /V/Z is symmetric,

= Mba.,d = Mhb . (98)

There is an orthogonal transformation 7 which carries the line of intersection
of the planes (97) parallel to the %s axis (in fact, there are an infinity of
such transformations, any one of which will do for our purposes). Introducing
in (94) the change of variable ¢ = 7=  gives, since Idet 7|=7, '

/ - 3 R
A eyer /e "E 4 dy dy, dy, (99)
You

where S is a cylinder set parallel to %#; . Hence, we may integrate out
Y, and obtain

7 _% I 2y %
4 - Zﬂ/e 471 48) dy dy, (100)
Sz

where S, is a subset of the plane which may be described as follows. The
distances from the origin to the planes (97) and the angle between them are
given by

Ay = 2T e My = Mis . & b . 1ol
s 0 LR 0 8T ok gk Hon
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These quantities are, of course, invariant under orthogonal transformation and,
therefore, (101) gives the distances to, and the angle between, the lines which
bound S, . Using (98) in (101) gives

PPy Py = g 6 - 25 102
€ = (ZMa)s ’ * T TGmek 0 ZMa)% (bmp)B (102)
so that the parameters which describe S, , and therefore /A , are expressed

simply in terms of linear and bilinear forms with matrix A/ . Thus, with the
use of (96), we have finally

'\ mf/ sz Z , d‘ - m” - m,s
(/ur/ “Z e */‘-n) C“ﬂ “Z A */’(3371;

(103)

- Ay = Ahyg = My # Mas
(/“ﬂ -Rly */‘n (/.(,, -2l g */“zs)‘

ags 6 =

where the Ay are the elements of A/ . Similarly, for 2 and B , we
have

dm Mg - My A% - Myy = Mae (104)
(/“ﬂ ~2 s, "'/—‘n.)" ? » (/ln, - 2/‘-&: */":s)’i‘
- mll mu
> -
’ gy =Rt 7t gy)% ’ é (ug- Z/“u * n )X
cos o, A 2y Ay /‘xr ALy Alas “hl gy s Ahen Tl ay

cos 8%
(Myy = R st "/‘n) (ﬂ-n ~R kg F gy )7 ? &"n'?/"‘rsb“n)&@a"?/“u%u)/‘

A convenient formula for computation of the #7 s for A = 3 has been obtained
from (100), (103), (104) while further work is needed to obtain a computational
form for larger A .
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VIIL
RECOMMENDATIONS FOR FURTHER INVESTIGATIONS

1, Maximum Likelihood Reception of Frequency Modulated Signals

This investigation should be extended to include operation near and
below the FM threshold., If the results obtained are superior to those
obtainable by other means, such as FMFB, then means of implementing
maximum likelihood FM receivers should be investigated.

2. Threshold Performance in FM Systems

In Chapter III, the threshold characteristic of an FM receiver con-
sisting of a limiter -discriminator followed by a minimum mean-square-error
postdetection filter (Wiener filter) was investigated., The modulation function
was assumed to be a gaussian random variable which made the determination
of the required IF receiver bandwidth rather difficult and somewhat arbitrary.

It would be desirable to extend this work to include other forms of
modulating functions, the statistics of which would be closer to those of signal
functions encountered in practice. It is suggested that a similar analysis be
carried through for a band-limited modulation function having a uniform
distribution of amplitude over a given range. This would be more repre-
sentative of practical situations and, also, would lead to a better defined
bandwidth of the transmitted signal. This would also allow the results of
the FM analysis to be compared with the PCM analysis in Chapter V.,

The work in Chapter III considered only the effects of the additive,
white, gaussian noise source in deteriniaing tlve output signal-to-noise ratio,
The noise power and, hence, the position of the threshold is quite dependent
on the IF bandwidth selected, Thus, from the standpoint of reducing noise
(and, hence, threshold), it would be desirable to reduce the bandwidth; how-
ever, any reduction in bandwidth is accompanied by increasing distortion due
to truncation of the IF signal spectrum. This work should be extended to
establish, quantitatively, the most desirable IF bandwidth in order to optimize
over -all performance when considering both the additive noise and signal
distortion effects,
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3. Use of Information Theory to Bound the
Performance of Communicationis Systems

The bound derived in this report is on the ratio of signal entropy
power to mean square error in terms of channel capacity, This result has
two serious shortcomings, First, we do not know how to attain the bound,
but anticipate that a close approach to the bound would entail a very lengthy
coding procedure, Secondly, the practical significance of a bound on the
ratio of signal entropy power to mean square error is not immediately
apparent, With regard to the first point, one may be able to obtain bounds
for codes of finite complexity by proceeding in a manner similar to that
outlined in Chapter V.,

4, Investigation of Transmission of
Analog Data Over a Digital Channel

Further consideration should be given to the selection of the performance
criteria (S/N, MSE, etc.) in terms of the system application,

A comparison should be made with conventional analog systems (e. g.,
FM and FMFB) to establish the relative merits of analog and analog-digital
systems as a function of channel parameters, bandwidth-expansion factors,
required average power, etc,

The investigation of the effects of different error distributions should
be continued. The distribution of the digital errors may be manipulated in
several ways; for instance, in a PCM system, different energies may be
assigned (by varying the duration or amplitude) to the various bits of a code
word, The ability to alter the error probabilities may be exploited in a
manner akin to predistortion of analog signals, such as pre-emphasis in FM
systems. Theoretical bounds for such systems with nonuniform error proba-
bilities need to be developed.

The system performance when an analog signal is transmitted by a

digital system over a fading channel should be investigated, and a comparison
should be made with direct analog methods operating over an equivalent channel.
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5. Optimization of Digital Communications Systems
Operating Over Dispersive Channels

By system optimization i8 meant the simultaneous specification of
the transmitted waveforms and the receiver, so as to obtain the minimum
probability of error under the given restraints.

The entire solution to this problem has not yet been obtained even
for the simplest cases considered, except for the case N = 2. The present
state of affairs can perhaps best be summed up by stating that, for a known
channel transfer function and noise statistics,

a, given the set of transmitted signals, the best receiver
configuration can be determined, or

b. given the receiver configuration, the best set of signals
to transmit can be determined.

Although we have expended considerable effort at attempts to obtain

simultaneous optimization, we have so far not been successful. This, there-

fore, remains an open problem. It is noted that, in the radar field, a great

amount of effort recently has been devoted to signal synthesis. Many valuable
results have been obtained, although no real optimum has been found. There-

fore, it seems reasonable to expend further effort at improving system per-
formance even if the optimum remains elusive for the present.

S
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